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Chapter 1

Basic Concepts of Set
Theory

1.1 The concept of a set

A set is an abstract collection of distinct objects which are called the mem-
bers or elements of that set. Objects of quite different nature can be members
of a set, e.g. the set of red objects may contain cars, blood-cells, or painted
representations. Members of a set may be concrete, like cars, blood-cells or
physical sounds, or they may be abstractions of some sort, like the number
two, or the English phoneme /p/, or a sentence of Chinese. In fact, we
may arbitrarily collect objects into a set even though they share no property
other than being a member of that set. The subject matter of set theory and
hence of Part A of this book is what can be said about such sets disregarding
the actual nature of their members.

Sets may be large, e.g. the set of human beings, or small, e.g. the set
of authors of this book. Sets are either finite, e.g. the readers of this book
or the set of natural numbers between 2 and 98407, or they are infinite, e.g.
the set of sentences of a natural language or the set of natural numbers:
zero, one, two, three, .... Since members of sets may be abstract objects,
a set may in particular have another set as a member. A set can thus
simultaneously be a member of another set and have other sets as members.
This characteristic makes set theory a very powerful tool for mathematical
and linguistic analysis.

A set may be a legitimate object even when our knowledge of its member-
ship is uncertain or incomplete. The set of Roman Emperors is well-defined
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4 CHAPTER 1

even though its membership is not widely known, and similarly the set of all
former first-grade teachers is perfectly determined, although it may be hard
to find out who belongs to it. For a set to be well-defined it must be clear in
principle what makes an object qualify as a member of it. For our present
purposes we may simply assume that, for instance, the set of red objects is
well-defined, and disregard uncertainties about the exact boundary between
red and orange or other sources of vagueness.

A set with only one member is called a singleton, e.g. the set consisting
of you only, and there is one special set, the empty set or the null set, which
has no members at all. The empty set may seem rather startling in the
beginning, but it is the only possible representation of such things as the set
of square circles or the set of all things not identical to themselves. Moreover,
it is a mathematical convenience. If sets were restricted to having at least
one member, many otherwise general statements about sets would have to
contain a special condition for the empty set. As a matter of principle,
mathematics strives for generality even when limiting or trivial cases must
be included.

We adopt the following set-theoretic notation: we write A, B, C,...
for sets, and a,b,c,... or sometimes z,y, z,... for members of sets. The
membership relation is written with a special symbol €, so that b € A is
read as ‘b is a member of A’. It is convenient also to have a notation for
the denial of the membership relation, written as ¢, so that b ¢ A is read as
‘b is not a member of A’. Since sets may be members of other sets we will
sometimes write A € B, when the set A4 is a member of set B, disregarding
the convention that members are written with lower case letters.

1.2 Specification of sets

There are three distinct ways to specify a set: (1) by listing all its members,
(2) by stating a property which an object must have to qualify as a member
of it, and (3) by defining a set of rules which generate its members. We
discuss each method separately.

List notation: When a set is finite, its members can in principle be
listed one by one until we have mentioned them all. To specify a set in
list notation, the names of the members, written in a line and separated by
commas, are enclosed in braces. For example, the set whose members are
the world’s longest river, the first president of the United States and the
number three could be written as
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(1-1) {The Amazon River, George Washington, 3}

Several things must be noted here. First, in specifying a set, we use a name
or some definite description of each of its members, but the set consists
of the objects named, not of the names themselves. In our example, the
first president of the United States, whose name happens to be ‘George
Washington’, is a member of the set. But it is the man who belongs to the
set, not his name. Exactly the same set could have been described in the
following way

(1-2) {The Amazon River, the first president of the United States, 3}

by using an alternative description for this individual. Of course, a set may
also contain linguistic objects like names. To avoid confusion, names which
are members of sets in their own right are put in single quotes. The set

(1-3) {The Amazon River, ‘George Washington’, 3}

should hence be distinguished from the set in (1-1), as it contains a river,
a name and a number, but not the man who was the first president of the
United States. It is important to realize that one and the same set may
be described by several different lists, which prima facie have nothing in
common except that they denote the same individuals.

Second, insofar as sets are concerned, it is an accidental feature of our left
to right writing convention that the members are listed in a particular order.
Contrary to what this notation may suggest, there is no first, second or third
member in the set (1-1). A less misleading notation, which we sometimes
use, is shown in (1-4) below; it avoids the suggestion of any ordering of its
members (see the Venn diagrams in Sec. 6 below).

(1-4) :
George Washington

The Amazon River

The list notation is obviously more convenient to write and typeset, and is
therefore usually preferred.
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Another point about the list notation for sets is that writing the name of
a member more than once does not change its membership status. Should
we write

(1-5) {a,b,c,d,e e e e}
we would have described exactly the same set as by writing
(1-6) {a,b,c,d e}

This is a consequence of a fundamental principle of set theory: for a given
object, either it is a member of a given set or it is not. There is no such thing
as halfway, multiple or gradual membership in our set theory (although there
have been attempts to construct theories of “fuzzy sets”; see Zadeh (1987)).

For large finite sets the list notation may be impractical and is abbrevi-
ated if some obvious pattern can be recognized in the list. For example, to
list all multiples of five between zero and one hundred, we may write:

(1-7) {0,5,10,15,...,95,100}

Predicate notation: The list notation can be used, strictly speaking,
only for finite sets, although it is sometimes used in elliptical form for well-
known infinite sets such as the various sets of numbers. For example, the set
of positive integers (whole numbers) is sometimes denoted by {1,2,3,4,...}.
A better way to describe an infinite set is to indicate a property the mem-
bers of the set share. The so-called predicate notation for this type of set
description is illustrated by

(1-8) {z | z is an even number greater than 3}

The vertical line following the first occurrence of the variable z is read ‘such
that’. The whole expression in (1-8) is read ‘the set of all z such that z
is an even number greater than 3.’ Here z is a variable, which we may
think of as an auxiliary symbol that stands for no particular object, but it
indicates what the predicate is applied to. Note that the predicate notation
describes finite and infinite sets in the same way (e.g., the predicate ‘z is an
even number between 3 and 9’ specifies the finite set {4,6,8}) and that two
predicates, if they are coextensive, will specify the same set. For example,

(1-9) {z | z is evenly divisible by 2 and is greater than or equal to 4}
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is the same set as (1-8).

A predicate may also define its members in relation to something else.
For instance, the set

(1-10) {z |z is a book and Mary owns z}

contains the books that Mary owns.

Russell’s Paradox: In the early years of set theory any conceivable
property was thought to be a defining property of a set. But Bertrand Russell
discovered in 1901 that a paradox could be obtained from an apparently
acceptable set specification of that sort.

Russell observed first that if sets are defined by properties of their mem-
bers, some sets will turn out to be members of themselves and other sets
will not. For example, the set of all elephants is not itself an elephant, and
therefore is not a member of itself. But the set of all abstract concepts must
contain itself as member, since a set is an abstract concept. The properties
‘is a member of itself’ and ‘is not a member of itself’ should therefore also be
defining properties of sets. In particular, then, one could define a set U as the
set of all those sets which are not members of themselves: U = {z | z ¢ z}.
Then we may ask of U whether it is a member of itself. Now two cases may
obtain: (i) if U is not a member of itself, then it satisfies the defining char-
acteristic of members of U, and therefore it must be a member of U, i.e., of
itself; or (ii) if U is a member of itself, then it does not satisfy the defining
property, hence it is not a member of U, i.e., of itself. Since U either is or is
not a member of U, the result is a logical paradox. The evident conclusion
from this paradox is that there is no such set U/, but nothing in Cantor’s
set theory excluded such a possible defining property. The discovery of the
Russell paradox was therefore of great importance (many different but es-
sentially equivalent versions have since been formulated), but it was all the
more significant in light of the fact that logicians and mathematicians had
been attempting to show that set theory could serve as a foundation for all
of mathematics. The appearance of a paradox in the very foundations of set
theory made some people doubtful of long-used and familiar mathematical
notions, but mathematical practice continued as usual without being ham-
pered by this foundational crisis. Many inventive and innovative solutions
have been proposed to avoid the paradox, to resolve it or to make its con-
sequences harmless. One such way, initially suggested by Russell, was type
theory, which has found fruitful applications to natural language (e.g. in
Montague Grammar; see Part D), as well as in the context of programming
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languages and their semantics, but it is beyond the scope of this book to
discuss the type theories in general or any of the various other solutions to
the set-theoretic paradoxes (see, however, the axiomatization of set theory
in Chapter 8, section 2.8).

Recursive rules: Since finite sets specified simply by listing their mem-
bers can never lead to such paradoxes, no changes had to be made for them.
For infinite sets, the simplest way to avoid such paradoxes and still be able
to define most sets of relevance to ordinary mathematics is to provide a rule
for generating elements “recursively” from a finite basis. For example, the
set E = {4,6,8,...} (=(1-8)=(1-9)) can be generated by the following rule:

(1-11) a)4€ E
b)Ifz € E,thenz+2€ FE
¢) Nothing else belongs to E.

The first part of the rule specifies that 4 is a member of E; by applying
the second part of the rule over and over, one ascertains that since 4 € E,
then 6 € E; since 6 € E, then 8 € E; etc. The third part insures that no
number is in E except in virtue of a and b.

A rule for generating the members of a set has the following form: first,
a finite number of members (often just one) are stated explicitly to belong to
the set:; then a finite number of if-then statements specifying some relation
between members of the set are given, so that any member of the set can be
reached by a chain of if-then statements starting from one of the members
specified in the first part of the rule, and nothing that is not in the set can
be reached by such a chain. We will consider such recursive devices in more
detail in Chapter 8, section 1.1.

The earlier method of specifying a set by giving a defining property
for its members has not been abandoned in practice, since it is often quite
convenient and since paradoxical cases do not arise in the usual mathematical
applications of set theory. Outside of specialized works on set theory itself,
both methods are commonly used.

1.3 Set-theoretic identity and cardinality

We have already seen that different lists or different predicates may specify
the same set. Implicitly we have assumed a notion of identity for sets which
is one of the fundamental assumptions of set theory: two sets are identical
if and only if they have exactly the same members. For instance,
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(1-12) {1,2,3,4,5,6}

and

(1-13) {z |z is a positive integer less than 7}
and

(1-14) a)le A
b)ifz € A and z is less than 6, thenz + 1€ 4
¢) nothing else is in A

are three different kinds of specifications, but because each picks out exactly
the same members, we say that they specify the same set. We use the equals
sign ‘=" for set-theoretic identity. Thus we may write, for example,

(1-15) {1,2,3,4,5,6} = {z | = is a positive integer less than 7}

The equals sign is also used in naming sets. For example, we might write
‘let B = {1,2,3,4,5,6} to assign the name ‘B’ to the set in (1-12). The
context will make it clear whether ‘=" is being used to stipulate the name of
a set or to assert that two previously specified sets are identical.

A consequence of this notion of set-theoretic identity is that the empty
set is unique, as its identity is fully determined by its absence of members.
Thus the set of square circles and the set of non-self-identical things are the
same set. Note that the empty list notation ‘{}’ is never used for the empty
set, but we have a special symbol ‘@’ for it.

The number of members in a set A is called the cardinality of A, written
|A] or #(A). The cardinality of a finite set is given by one of the natural
numbers. For example, the set defined in (1-12) has cardinality 6, and since
(1-13) and (1-14) describe the same set, they describe sets of the same car-
dinality (of course distinct sets may also have the same cardinality). Infinite
sets, too, have cardinalities, but they are not natural numbers. For exam-
ple, the set of natural numbers itself has cardinality ‘aleph-zero’, written R,
which is not a natural number. We will take up the subject of infinite sets
in more detail in Chapter 4.

1.4 Subsets

When every member of a set A is also a member of a set B we call 4 a
subset of B. We denote such a relation between sets by A C B. Note that
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B may contain other members besides those of A, but this is not necessarily
so. Thus the subset relation allows any set to be a subset of itself. If we
want to exclude the case of a set being a subset of itself, the notion is called
proper subset, and written as A C B. For the denial of the subset relation
we put a slash across the subset symbol, e.g. A B means that A is not a
subset of B, hence that A has at least one member which is not a member

of B.

The following examples illustrate these concepts.

(1-16) a) {a,b,c} C {s,b,a,e,9,%,c}
b) {a,b,5} Z {s,b,a,e,g,i,c}
) {a,b,c} C {s,b,a,e,9,i,c}
) 0 C {a}
e) {a,{a}} C {a,b,{a}}
£) {{a}} £ {a}
g) {a} € {{a}}, but {a} € {{a}} (1)

A curious consequence of the definition of subset is that the null set is
a subset of every set. That is, for any set A whatever, § C A. Since
has no members, the statement that every member of 0 is also a member of
A holds, even if vacuously. Alternatively, we could reason as follows. How
could @ fail to be a subset of A? According to the definition of subset, there
would have to be some member in ( that is not also a member of A. This is
impossible since § has no members at all, and so we cannot maintain that
0 ¢ A. Since the argument does not depend in any way on what particular
set is represented by A, it is true that § C A for every A.

Note, however, that while 0 C {a}, for example {0} Z {a}. The set {0}
has a member, namely 0, and therefore is not the empty set. It is not true
that every member of {0} is also a member of {a}, so {0} Z {a}.

Members of sets and subsets of sets both represent relationships of a
part to a whole, but these relationships are quite different, and it is im-

g}

[o®

portant not to confuse them. Subsets, as the name suggests, are always
sets, whereas members may or may not be. Mars is a member of the set
{Earth, Venus, Mars} but not a subset of it. The set containing Mars as its
only member, {Mars}, is a subset of {Earth, Venus, Mars} because every
member of the former is also a member of the latter. Further, whereas every
set is a subset of itself, it is not clear whether a set can ever be a member
of itself, as we saw above in the discussion of Russell’s Paradox. Note how
important it is here to distinguish between Mars, the planet, and {Mars},
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the set.

Sets with sets as members provide the most opportunities for confusion.
Consider, for example, the set A = {b, {c}}. The members of A are b and {c}.
From the considerations in the preceding paragraph we see that 6 ¢ 4 and
{b} € A. Similarly, {c} ¢ A because ¢ is not a member of 4, and {{c}} C 4
because every member of {{c}}, namely, {c}, is a member of A. The reader
should also verify the following statements concerning this example: {b} € 4;
c@A; {{c}} & 4;{b,{c}} C 4; {b,{c}} € 4; {{b,{c}}} Z 4.

Another difference between subsets and members has to do with our
previous remarks about sets of sets. We have seen that if b€ X and X € C,
it does not necessarily follow that b € C. The element b could be a member
of C, but if so this would be an accidental property of C, not a necessary
one. With inclusion, however, if A C B and B C C, it is necessarily true
that 4 C C; that is, if every member of A is also a member of B, and
further if every member of B is also a member of C, then it must be true
that every member of A is also a member of C. For example, {a} C {a,b}
and {a,b} C {a,b,c} so it follows that {a} C {a,b,c}. On the other hand,
a € {a} and {a} € {{a},b}, but a & {{a}, b} (assuming of course that a and
b are distinct).

1.5 Power sets

Sometimes we need to refer to the set whose members are all the subsets of a
given set A. This set is called the power set of A, which we will write as p(A).
Suppose A = {a,b}; then the power set of A, p(A), is {{a}, {b}, {a,b},0}.
The name ‘power set’ derives from the fact that if the cardinality of 4 is
some natural number n, then p(A) has cardinality 27, i.e., 2 raised to the
n power,or 2 X 2 X 2 X ...x 2 (n times). Sometimes the power set of A is
denoted as 24.

1.6 Union and intersection

We now introduce two operations which take a pair of sets and produce
another set.

The union of two sets A and B, written AU B, is the set where members
are just the objects which are members of A or of B or of both. In the
predicate notation the definition is
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(1-17) AUB:def{z]:c € Aorz € B}

Note that the disjunction ‘or’ in (1-17) allows an object to be a member
of both A and B. For this reason, the ‘or’ is an inclusive disjunction; (see
Chapter 6, section 2). For example,

(1-18) Let K = {a,b}, L = {¢,d} and M = {b,d}, then

KUulL = {a,b,c,d}

KuM = {a,b,d}

LUM = {be,d}

(KUL)UM = KU(LUM) = {abc,d}
Kub = {a,b} = K

Lub = {c,d} = L

Set-theoretic union can easily be generalized to apply to more than two
sets, in which case we write the union sign in front of the set of sets to
be operated on: e.g. U{K,L,M} = the set of all elements in K or L
or M = {a,b,c,d}. There is a nice method for visually representing set-
theoretic operations, called Venn diagrams. Each set is drawn as a circle
and its members are represented by points within it. The diagrams for two
arbitrarily chosen sets are represented as partially intersecting - the most
general case — as in Figure 1-1. The region designated ‘1’ contains elements
which are members of 4 but not of B; region 2, those things in B but not in
A; and region 3, members of both B and A. Points in region 4 outside the
diagram represent elements in neither set. Of course in particular instances
one or more of these regions might turn out to be empty.

The Venn diagram for the union of A and B is then made by delineating
all the regions contained in this set — shown in Figure 1-2 by shading areas
1, 2, and 3.

The second operation on arbitrary sets A and B produces a set whose
members are just the members of both A and B. This operation is called
the intersection of A and B, written as AN B. In predicate notation this
operation would be defined as

(1-19) AﬂB:def{:cl:c € Aand z € B}

For example, the intersection of the sets K and M of (1-18) is simply the
singleton {b}, since b is the only object which is both a member of K and a
member of M. Here are some more examples:
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(1-20) KnL =0
LnM = {d}
KNnK = {a,b} = K
Kno = 0
(KNL)nM = Kn(InM) = 0
Kn(LuM) = {b}

The general case of intersection of arbitrary sets A and B is represented
by the Venn diagram of Figure 1-3.

Figure 1-3: Set-theoretic intersection A N B.

Intersection may also be generalized to apply to three or more sets; e.g.,
N{K,L,M} = 0. The intersection of three arbitrary sets 4, B and C is
shown in the Venn diagram of Figure 1-4. Here the black area represents
what is common to the regions for AN B, BN C and ANC. Obviously
when more than three sets are involved, the Venn diagrams become very
complex and of little use, but for simple cases they are a valuable visual aid
in understanding set-theoretic concepts.

Problem: Construct a Venn diagram for the union of three arbitrary sets.

1.7 Difference and complement

Another binary operation on arbitrary sets A and B is the difference, written
A — B, which ‘subtracts’ from A all objects which are in B. The predicate
notation defines this operation as follows:
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Figure 1-4: Venn diagram for {4, B,C}
(ANB,BNC and ANC (shaded) and
N{4,B,C} (black)).

(1-21) A-B :def{:c |z € Aand z ¢ B}

A - B is also called the relative complement of A and B. For instance for the
particular sets L and M, given in (1-18), L — M = {c}, since ¢ is the only
member of L which is not a member of M. If A and B have no members in
common, then nothing is taken from A;ie., A— B = A. Note that although
for all sets A, B: AUB = BUA and ANB = BN A, it is not generally true
that A~ B = B — A. If one thinks of difference as a kind of subtraction, the
fact that the order of the sets matters in this case is quite natural.

The Venn diagram for the set-theoretic difference 4 — B is shown in
Figure 1-5.

Some more examples:

(1-22) K-~M = {a}

L-K = {cd = L
M-L = {b}
K-0 = {ab} = K
P-K = 0

This operation is to be distinguished from the complement of a set A,
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Figure 1-5: Set-theoretic difference A — B.

written A’, which is the set consisting of everything not in A. In predicate
notation

(1-23) A' =def {z |z & A}

Where do these objects come from which do not belong to A? The answer
is that every statement involving sets is made against a background of as-
sumed objects which comprise the universe (or domain) of discourse for
that discussion. In talking about number theory, for example, the universe
might be taken as the set of all positive and negative real numbers. A truly
universal domain of discourse fixed once and for all, which would contain
literally ‘everything’ out of which sets might be composed, is unfortunately
impossible since it would contain paradoxical objects such as ‘the set of all
sets’. Therefore, the universe of discourse varies with the discussion, much as
the interpretation of the English words ‘everything’ and ‘everyone’ tends to
be implicitly restricted by the context of discourse. When no other specified
name has been given to the universe of discourse in a particular discussion,
we conventionally use the symbol U for it. When it is clear from the con-
text or irrelevant to the discussion at hand, the universe of discourse may
not be explicitly mentioned at all, but the operation of complement is not
well-defined without it. The complement of a set A, then, is the set of all
objects in the universe of discourse which are not in 4, ie.,

(1—24) Al=U-A

We see that in (1-23) the variable z in the predicate notation is implicitly
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understood to range over (i.e., take its values from) the set- theoretic universe
U (and the same is true, incidentally, in (1-17) and (1-19)).

The Venn diagram with a shaded section for the complement of 4 is
shown in Figure 1-6.

///////////////

//////////////

Figure 1-6: The set-theoretic complement
Al

1.8 Set-theoretic equalities

There are a number of general laws pertaining to sets which follow from the
foregoing definitions of union, intersection, subset, etc. A useful selection of
these is shown in Figure 1-7, where they are grouped (generally in pairs ~ one
for union, one for intersection) under their more or less traditional names.
We are not yet in a position to offer formal proofs that these statements really
do hold for any arbitrarily chosen sets X, Y, and Z (we will take this up in
Chapter 7, section 6), but for now we may perhaps try to convince ourselves
of their truth by reflecting on the relevant definitions or constructing some
Venn diagrams.

It is easy to see that for any set X, X U X is the same as X, since
everything which is in X or in X simply amounts to everything which is in
X. And similarly for everything which is in X and in X,so X N X = X.

Likewise, everything which is in X or in ¥ (or both) is the same as
everything which is in ¥ or in X (or both); thus, X UY = Y U X. The

argument for intersection is similar.
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1. Idempotent Laws
() XUuX =X (b)

2. Commautative Laws

() XUY =YUX (b)
3. Associative Laws

(a) (XuY)uz=XU(Yuz) (b)
4. Distributive Laws

(a) XU(YOZ):(XUY)Q(XUZ)

(b) Xn(Yuz)=(XnY)u(Xn2)

5. Identity Laws

(a) XUb=X (c)

(b) XUU=U (d)
6. Complement Laws

(a) XUX'=U (c)

(b) (X} =X (@)

7. DeMorgan’s Law
(a) (XUY)=X'nY' (b)

8. Consistency Principle

(a) XCYifXUY =Y (b)

equalities.

XNX=X

XnY=Y¥YnX

(XNnY)nZ=Xn(¥YNnZ)

XnB=20
XnU=X
XnX' =0
X-Y=XnY'

(XnYy=X'uy'

XCYiffXnY =X

Figure 1-7: Some fundamental set-theoretic
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The Associative Laws state that the order in which we combine three
sets by the operation of union does not matter, and the same is true if the
operation is intersection. To see that these hold, imagine the construction of
the appropriate Venn diagrams. We have three intersecting circles labelled
X,Y,and Z. We shade X UY first and then shade Z. The result is shading
of the entire area inside the three circles, and this corresponds to (X UY U Z.
Now we start over and shade Y U Z first and then X . The result is the same.

The construction of the Venn diagrams to illustrate the Distributive Laws
1s somewhat trickier. In Figure 1-8 we show a Venn diagram for X N(Y U Z).
To make it more perspicuous, X has been shaded with vertical lines and
Y U Z horizontally. The intersection of these two sets is then represented
by the cross-hatched area. Figure 1-9 shows the corresponding diagram for
(XNY)u(XNZ). XNY is shaded vertically and X N Z horizontally; thus,
the union is represented by the area shaded in either (or both) directions.
The reader should now be able to construct the Venn diagram for case (a)
of the Distributive Laws.

X

an

Figure 1-8: Venn diagram for X N (Y U Z)
(X shaded vertically, Y U Z shaded
horizontally, X N (Y U Z) cross-hatched).

The Identity Laws are evident from the definitions of union, intersection,
the null set, and the universal set. Everything which is in X or in @ just
amounts to everything whichis in X, etc. The Complement Laws are likewise
easily grasped from the definitions of complement with perhaps a look at
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—
—

Y Z

Figure 1-9: Venn diagram for
(XNY)U(XNZ)(XNY shaded vertically,
X N Z shaded horizontally,

(X NY)U (X N Z) the entire shaded area).

the Venn diagram in Figure 1-6. Case (d) becomes less baffling if we look
at Figure 1-5 and consider the area corresponding to the intersection of A
with the complement of B.

DeMorgan’s Laws are a symmetrical pair. Case (a): everything which is
in neither X nor Y is the same as everything which is not in X and not in
Y. Case (b): everything which is not in both X and Y is either not in X or
not in Y (or in neither). This case is less immediately evident, and a Venn
diagram will help.

The Consistency Principle is so called because it is concerned with the
mutual consistency of the definitions of union, intersection, and subset. If
we think of a Venn diagram in which the circle for X lies entirely inside the
circle for Y (representing X C V'), then it is easy to see that X UY =Y.
On the other hand, if we know that X UY =Y, then in the standard Venn
diagram the region corresponding to elements which are in X but not in ¥
must be empty (otherwise, the union would not be equal to Y). Thus, X’s
members lie entirely in the Y circle; so X C Y. The (b) case is similar.

It may help in getting a grasp on some of these laws if one considers
analogues from algebra. The operation of + (addition) and * (multiplication)
obey a commutative law:
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(1-25) for all numbersz,y, z+y=y+zandzxy=yxz
and an associative law:

(1-26) for all numbers z,y,z, (z+y)+z=z+(y+2)and (zxy)*z=
zx(y*z)

but neither is idempotent: in general it is not true that z + z = z nor that
z xz = ¢. However, there is a distributive law relating * and + as follows:

(1-27) for all numbers z, y, z, zx(y+z)=(zxy)+ (zx*2)

but no such law holds if = and + are interchanged; i.e., it is not in general
true that ¢ + (y x z) = (¢ + y) x (z + z). (For example, let z =1, y = 2, and
z = 3; then the left side is 7 and the right side is 12.)

Arithmetic analogues of the Identity Laws are ¢ + 0 = z, ¢ * 0 = 0, and
z x1 = z with 0 playing the role of the null set and 1 that of the universal
set. (But this analogy, too, breaks down: z + 1 does not equal 1.)

What we have seen then is that there is an algebra of sets which is
n some respects analogous to the familiar algebra involving addition and
multiplication but which has its own peculiar properties as well. We will
encounter this structure once more when we take up the logic of statements
in Chapter 6, and we will discover in Chapter 12 that both are instances of
what is called a Boolean algebra.

For the moment our concern is not with the structure of this algebra
but rather to show how these equalities can be used in the manipulation of
set-theoretic expressions. The idea is that in any set-theoretic expression
a set may always be replaced by one equal to it. The result will then be
an expression which denotes the same set as the original expression. For
example, in AN (B UC)' we may replace (B UC)' by its equivalent, B’ N C’
(citing DeMorgan’s Laws), to obtain AN(B'NC"). Since (BUC)' and B'NC’
have the same members, so do AN(BUC) and AN (B'NC').

This technique can be used to simplify a complex set-theoretic expres-
sion, as in (1-28) below, or to demonstrate the truth of other statements
about sets, as in (1-29) and (1-30). It is usually convenient to arrange such
demonstrations as a vertical sequence in which each line is justified by ref-
erence to the law employed in deriving it from the preceding line.

(1-28) Ezample: Simplify the expression (AU B)U (BN C)
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1. (AuB)u(BnCYy
2. (AUB)U(B'UC") DeM.
3. U(BU(B'UC) Assoc.
4. u((BuB)UuC" Assoc.
5. u@uc) Compl.
6. AU(C'UT) Comm.
7. AUU Ident.
8. U Ident.
(1-29) Ezample: Show that (AN B)N(ANC) = An(B-C).
1. (AnB)n(ANnCY
2. (AnB)n(A'uC) DeM.
3. An(Bn(4'uC) Assoc.
4. An((Bn4)u(BnC)) Distr.
B: (Aﬂ(BmA’))u(Am(BmC')) Distr.
6. (AnN(4'nB))U(An(BnC")) Comm.
7. (AnAYNB)U(AN(BNC") Assoc.
8. (InBYU(AN(BNCY) Compl.
9. (BnPu(An(BNnC)) Comm.
10. Qu(An(BNnC") Ident.
11. (An(BNnC"))uo Comm.
12. An(BnC") Ident.
13. An(B-C) Compl.

(1-30) Ezample: Show that X NY C X UY.

By the Consistency Principle this expression is true iff (X NY)N(XUY) =
X NY. We demonstrate the latter.

1. (XnY)n(XUY)
(XnY)nX)u((XnY)nY) Distr.
(XN(XnY))u((XnYy)nY) Comm.
(XnX)nY)u((XnY)nY) Assoc.
(XNnX)NY)u(Xn((YnY)) Assoc.
(XNnY)u(XnY) Idemp. (twice)
7. XnY Idemp.

Such arrays constitute formal proofs (of the fact that, in each of these
cases, the set in the last line is equal to that in the first line.) We will
take up the topic of proofs in due course, but the reader who attempts such

O O W N
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derivations in the exercises will no doubt encounter a notoriously trouble-
some problem connected with proofs; namely, while it is relatively simple to
verify that a given proof is correct, it may be very difficult to find the one
one wants. So if presented with a problem such as (1-29), one might have
to try many unsuccessful paths before finding one that leads to the desired
final expression. A certain amount of cutting and trying is therefore to be
expected.

Exercises

1. Given the following sets:
A = {a,b,c,2,3,4} E = {a,b,{c}}
B = {a,b} 5 0
C = {c2) G = {{a,b},{c.2}}
D = {bc}

classify each of the following statements as true or false
(a) ce A (g DCcA (m) BCG

(b) ceF (h) ACC (n) {B}CG

(¢) ceE (iy DCE (o) DCG

(d) {}eE (j) FCA (p) {D}CG

(e) {¢}eC (k) ECF (q) GCA

(f) BCA (1) BeG (r) {{c}}CE

Il

2. For any arbitrary set S,

(a) is S a member of {S}?
(b) is {S} a member of {S}?
(c) is {S} a subset of {S}?
(d) what is the set whose only member is {S}?
3. Write a specification by rules and one by predicates for each of the
following sets. Remember that there is no order assumed in the list,

so you cannot use words like ‘the first’ or ‘the latter’. Recall also that
a recursive rule may contain more than one if-then statement.

(a) {5,10,15,20,..}

(b) {7,17,27,37,..}

(c) {300,301,302,...,399,400}

(d) {3,4,7,8,11,12,15,16,19,20,.. .}
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(e) {0,2,-2,4,-4,6,—6,...}
(f) {1,1/2,1/4,1/8,1/16,...}

4. Consider the following sets:

S1 = {{0},{4}, 4} S6 = 0

52 = A ST = {0}
$3 = {4} 58 = {{0}}
S¢ = {{4}} S9 = {0,{0}}
55 = {{A4},4}

Answer the following questions. Remember that the members of a
set are the items separated by commas, if there is more than one,
between the outermost braces only; a subset is formed by enclosing
within braces zero or more of the members of a given set, separated
by commas.

(a) Of the sets S1 - S9 which are members of 517
(b) which are subsets of 517

(¢) which are members of 597

(d) which are subsets of S97

(e) which are members of 547

(f) which are subsets of §47

. Specify each of the following sets by listing its members:

(a) pfa,b,c} (d) p{0}
(b)  p{a} (e) pp{a, b}
(c) g0
. Given the sets 4,...,G as in Exercise 1, list the members of each of

the following:
(a) BUC (g) ANE (m)
(b) AuB (h) CnD (n)
(c) DUE (i) BNF (o)
(d) BUG (j) CnE (p)
() DUF (k) BNG (q)
(f) AnB (1) A-B

QAW
|
o S e
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7. Given the sets in Exercise 1, assume that the universe of discourse is

10.

11

U{4,B,C,D, E,F,G}. List the members of the following sets:

(a) (AnB)ucC (h) D'NnE

(b) An(BUC) (i) Fn(A-B)
(¢) (BUC)-(CUD) () (AnBYUU
(d) An(C - D) (k) (CuDb)nU
(e) (AnC)-(4nD) (1) cCnD

(f) & (m) GUF'

() (DUEY (n) (BnCY

- Let A = {a,b,c}, B = {c,d} and C = {d, e, f}.

(a) What are:

(i) AUB (v) BUD

(i) AnB (vi) An(BNnC)
(i) Au(BNCQ) (vii) A-B
(iv) Cu4d

(b) Is a a member of {4, B}?
(¢) Is @ a member of 4 U B?

- Show by using the set-theoretic equalities in Figure 1-7 for any sets A,

B, and C,

() (4UC)N(BUCY)C (AUB)

(b) AN(B-A)=90

Show that the Distributive Law 4(a) is true by constructing Venn di-
agrams for X U(Y N Z) and (X UY)N (X U 2).

The symmetric difference of two sets A and B, denoted A + B, is
defined as the set whose members are in 4 or in B but not in both A
and B, i.e.

A+ B=ges(AUB) - (ANB)

(a) Draw the Venn diagram for the symmetric difference of two sets.

(b) Show that A+ B = (A- B)U (B - A) by means of the set-
theoretic equalities in Figure 1-7. Verify that the Venn diagram
for (A — B) U (B — A) is equivalent to that in (a).

(c) Show that for all sets A and B, A+ B = B + A.
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(d) Express each of the following in terms of union, intersection, and
complementation, and simplify using the set-theoretic equalities.
(i) A+A (iv) A+ B,where ACB
(i) A+U (v) A+ B,where ANB=10
(i) A+0
(e) Show that (A—-B)+(B—-A))=A+B
(f) Show that (A+B)C Biff AC B

Call adjectives which are correctly predicated of themselves ‘autolog-
ical’ and those which are not, ‘heterological.” For example, ‘English’
and ‘short’ are autological, but ‘French’ and ‘long’ are heterologial.
Show that when we ask whether the adjective ‘heterological’ is hetero-
logical or autological we are led to a contradiction like that in Russell’s
Paradox. This is known as Grelling’s Paradox.



Chapter 2

Relations and Functions

2.1 Ordered pairs and Cartesian products

Recall that there is no order imposed on the members of a set. We can, how-
ever, use ordinary sets to define an ordered pair, written (a, b ) for example,
in which a is considered the first member and b is the second member of the
pair. The definition is as follows:

(2_1) (a,b) :def{{a}: {a7 b}}

The first member of (a,b) is taken to be the element which occurs in
the singleton {a}, and the second member is the one which is a member of
the other set {a,b}, but not of {a}. Now we have the necessary properties
of an ordering since in general (a,b) # (b,a). This is so because we have
{{a},{a,b}} = {{b},{a,b}} (that is, (a,b) = (b,a)), if and only if we have
a = b. Of course, this definition can be extended to ordered triples and
in general ordered n-tuples for any natural number n. Ordered triples are
defined as

(2—2) (a:b:c>:def<<a’b):c>

It might have been intuitively simpler to start with ordered sets as an ad-
ditional primitive, but mathematicians like to keep the number of primitive
notions to a minimum.

If we have two sets A and B, we can form ordered pairs from them by
taking an element of A as the first member of the pair and an element of B

27
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as the second member. The Cartesian product of A and B, written A x B,
is the set consisting of all such pairs. The predicate notation defines it as

(2-3) Ax B:def{(z,y) |z € Aandye€ B}

Note that according to the definition if either A or B is 0, then AxB = 0.
Here are some examples of Cartesian products:

(2-4) Let K ={a,b,c}and L = {1,2}, then

ExL = {(a1),(a,2),(b1)(52),(c,1),(c,2)}
LxK = {(1,a),(2,a){1,b),(2,b),(1,¢),(2,¢)}
LxL = {(1,1),(1,2),(2,1)(22)}

It is important to remember that the members of a Cartesian product
are not ordered with respect to each other. Although each member is an
ordered pair, the Cartesian product is itself an unordered set of them.

Given a set M of ordered pairs it is sometimes of interest to determine
the smallest Cartesian product of which M is a subset. The smallest A and
B such that M C A x B can be found by taking A = {a | (a,b) € M for
some b} and B = {b| (a,b) € M for some a}. These two sets are called the
projections of M onto the first and the second coordinates, respectively. For
example, if M = {(1,1),(1,2),(3,2)}, the set {1, 3} is the projection onto
the first coordinate, and {1,2} the projection onto the second coordinate.
Thus {1, 3} x {1,2} is the smallest Cartesian product of which M is a subset.

2.2 Relations

We have a natural understanding of relations as the sort of things that hold
or do not hold between objects. The relation ‘mother of’ holds between
any mother and her children but not between the children themselves, for
instance. Transitive verbs often denote relations; e.g., the verb ‘kiss’ can
be regarded as denoting an abstract relation between pairs of objects such
that the first kisses the second. The subset relation was defined above as
a relation between sets. Objects in a set may be related to objects in the
same or another set. We write Rab or equivalently aRb if the relation R
holds between objects a and b. We also write R C A X B for a relation
between objects from two sets A and B, which we call a relation from A to
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B. A relation holding of objects from a single set A is called a relation in
4. The projection of R onto the first coordinate is called the domain of R
and the projection of R onto the second coordinate is called the range of R.
A relation R from A to B thus can be viewed as a subset of the Cartesian
oroduct A X B. (There are unfortunately no generally accepted terms for
the sets A and B of which the domain and the range are subsets.) It is
mmportant to realize that this is a set-theoretic reduction of the relation R to
z set of ordered pairs, i.e. {(a,b) | aRb}. For example, the relation ‘mother
of’ defined on the set H of all human beings would be a set of ordered pairs
n H x H such that in each pair the first member is mother of the second
member. We may visually represent a relation R between two sets A and B
oy arrows in a diagram displaying the members of both sets.

A B

Figure 2-1: Relation R: A — B.

In Figure 2-1, A = {a,b} and B = {c,d,e} and the arrows represent a
set-theoretic relation R = {{a,d),(a,e),(b,c)}. Note that a relation may
relate one object in its domain to more than one object in its range. The
complement of a relation R C A x B, written R/, is set-theoretically defined
as

(2-5) R'=ges(Ax B)-R

Thus R’ contains all ordered pairs of the Cartesian product which are not
members of the relation R. Note that (R')’ = R. The inverse of a relation
R C Ax B, written R™!, has as its members all the ordered pairs in R, with
their first and second elements reversed. For example, let A = {1,2,3} and
let R C AxAbe{(3,2),(3,1),(2,1)}, whichis the ‘greater than’relation in
A. The complement relation R'is {{1,1),(1,2),(1,3),(2,2),(2,3),(3,3)},



30 CHAPTER 2

the ‘less than or equal to’ relation in A. The inverse of R, R™1,1s {(2,3),(1,
3),(1,2)}, the ‘less than’ relation in A. Note that (R™Y)"! = R, and that
if RC Ax B, then R"* C B x A, but " C Ax B.

We have focused in this discussion on binary relations, i.e., sets of or-
dered pairs, but analogous remarks could be made about relations which are
composed of ordered triples, quadruples, etc., i.e., ternary, quaternary, or
just n-place relations.

2.3 Functions

A function is generally represented in set-theoretic terms as a special kind
of relation. A relation R from A to B is a function if and only if it meets
both of the following conditions:

1. Fach element in the domain is paired with just one element in the
range.

2. The domain of R is equal to A.

This amounts to saying that a subset of a Cartesian product A X B can
be called a function just in case every member of A occurs exactly once as
a first coordinate in the ordered pairs of the set.

As an example, consider the sets A = {a,b,c} and B = {1,2,3,4}. The
following relations from A to B are functions:

(2_6) P = {<aa
Q = {
R = {

2-7) S
T {
V = {(a,2),<a, >7(b7 >}

I
~—

i
uﬁ Q
N
i
o~ o~
o o~

S fails to meet condition 2 because the set of first members, namely
{a,b}, is not equal to A. T does not satisfy condition 1, since a is paired
with both 2 and 3. In relation V both conditions are violated.
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Much of the terminology used in talking about functions is the same as
that for relations. We say that a function that is a subset of A x B is a
function from A to B, while one in A x A is said to be a function in 4. The
notation ‘F: A — B’ is used for ‘F is a function from A to B.” Elements in
the domain of a function are sometimes called arguments and their corre-
spondents in the range, values. Of function P in (2-6), for example, one may
say that it takes on the value 3 at argument c¢. The usual way to denote
this fact is P(c) = 3, with the name of the function preceding the argument,
which is enclosed in parentheses, and the corresponding value to the right
of the equal sign.

‘Transformation,’ ‘map,’ ‘mapping,’ and ‘correspondence’ are commonly
used synonyms for ‘function,’ and often ‘F(a) = 2’ is read as ‘F maps a into
2.’ Such a statement gives a function the appearance of an active process
that changes arguments into values. This view of functions is reinforced by
the fact that in most of the functions commonly encountered in mathematics
the pairing of arguments and values can be specified by a formula contain-
ing operations such as addition, multiplication, division, etc. For example,
F(z) = 2z + 1 is a function which, when defined on the set of integers,
pairs 1 with 3, 2 with 5, 3 with 7, and so on. This can be thought of as
a2 rule which says, “To find the value of F at z, multiply = by 2 and add
1.” Later in this book it may prove to be necessary to think of functions as
dynamic processes transforming objects as their input into other objects as
their output, but for the present, we adhere to the more static set-theoretic
perspective. Thus, the function F(z) = 2z + 1 will be regarded as a set of
ordered pairs which could be defined in predicate notation as

(2-8) F ={{(z,y)|y =2z + 1} (where z and y are integers)

Authors who regard functions as processes sometimes refer to the set of
ordered pairs obtained by applying the process at each element of the domain
as the graph of the function. The connection between this use of “graph”
and a representation consisting of a line drawn in a coordinate system is not
accidental.

We should also note that relations which satisfy condition 1 above but
perhaps fail condition 2 are sometimes regarded as functions, but if so, they
are customarily designated as ‘partial functions.” For example, the function
which maps an ordered pair of real numbers (a,b) into the quotient of a
divided by b (e.g., it maps (6,2) into 3 and (5,2) into 2.5) is not defined
when b = 0. But it is single-valued - each pair for which it is defined is
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associated with a unique value — and thus it meets condition 1. Strictly
speaking, by our definition it is not a function, but it could be called a
partial function. A partial function is thus a total function on some subset
of the domain. Henceforth, we will use the term ‘function,’ if required, to
indicate a single-valued mapping whose domain may be less than the set A
containing the domain.

It is sometimes useful to state specifically whether or not the range of a
function from A to B is equal to the set B. Functions from A to B in general
are said to be into B. If the range of the function equals B, however, then the
function is onto B. (Thus onto functions are also into, but not necessarily
conversely.) In Figure 2-2 three functions are indicated by the same sort
of diagrams we introduced previously for relations generally. It should be
apparent that functions F' and G are onto but H is not. All are of course
into.

A A c
T — L
F G H

Figure 2-2: Tlustration of onto and into
functions.

A function F: A — B is called a one-to-one function just in case no mem-
ber of B is assigned to more than one member of A. Function F in Figure
9.9 is one-to-one, but G is not (since both b and c are mapped into 2), nor
is H (since H(b) = H(c) = 3). The function F defined in (2-8) is one-to-one
since for each odd integer y there is a unique integer z such that y = 2z + 1.
Note that F is not onto the set of integers since no even integer is the value
of F for any argument z. Functions which are not necessarily one-to-one
may be termed many to one. Thus all functions are many-to-one strictly
speaking, and some but not all of them are one-to-one. It is usual to apply
the term ”many-to-one”, however, only to those functions which are not in
fact one-to-one.

A function which is both one-to-one and onto (F in Figure 2-2 is an
example) is called a one-to-one correspondence. Such functions are of special
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nterest because their inverses are also functions. (Note that the definitions
oI the inverse and the complement of a relation apply to functions as well.)
The inverse of G in Figure 2-2 is not a function since 2 is mapped into both

5 and ¢, and in H~! the element 2 has no correspondent.

Problem: Is the inverse of function F in (2-8) also a function? Is F a
one-to-one correspondence?

o

.4 Composition

Siven two functions F: A — B and G: B — C, we may form a new function

rom A to C, called the composite, or composition of F and G, written Go F.
In predicate notation function composition is defined as

2-9) GOdeef{<z,z>\ for some y,(z,y) € F and (y,z) € G}

Figure 2-3 shows two functions F and G and their composition.

K L

\f

—
K M

F:K— 1L

L M,

' GoF:K— M

| —

G:L— M

Figure 2-3: Composition of two functions F
and G.
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Note that F is into while G is onto and that neither is one-to-one. This
shows that compositions may be formed from functions that do not have
these special properties. It could happen, however, that the range of the
first function is disjoint from the domain of the second, in which case, there
is no y such that (z,y) € F and (y,2) € G, and so the set of ordered pairs
defined by G o F is empty. In Figure 2-3, F is the first function and G is
the second in the composition. Order is crucial here, since in general GoF
is not equal to F o G. The notation G o F' may seem to read backwards,
but the value of a function F at an argument a is F(a), and the value of G
at the argument F(a) is written G(F(a)). By the definition of composition,
G(F(a)) and (G o F)(a) produce the same value.

A function F: A — A such that F = {{z,z) | ¢ € A} is called the
identity function, written id4. This function maps each element of A to
itself. Composition of a function F with the appropriate identity function
gives a function that is equal to the function F itself. This is illustrated in
Figure 2-4.

1da F
Foidy=F

Figure 2-4: Composition with an identity
function.

Given a function F: A — B that is a one-to-one correspondence (thus the
inverse is also a function), we have the following general equations:

(2-10) F~loF idy
FoF-! = 1idg
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These are illustrated in Figure 2-5.

A B A
b |
F F-1
B A B

b i
F-1 &

Figure 2-5: Composition of one-to-one
correspondence with its inverse.

The definition of composition need not be restricted to functions but can
o= applied to relations in general. Given relations R C Ax B and S C B3
the composite of R and §, written § o R, is the relation {(z,z) | for some

z,y) € Rand (y,z) € S}. An example is shown in Figure 2-6.

A B B

R ~ Wy =

s ) <5
RCAXB SCBxC SoRCAXC

Figure 2-6: Composition of two relations R
and S.

For any relation R C 4 x B we also have the following:

2-11) idgoR = R
Roidy = R

Note that the identity function in A, id4, is of course a relation and could
=qually well be called the identity relation in A)
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The equations corresponding to (2-10) do not hold for relations (nor for
functions which are not one-to-one correspondences). However, we have for
any one-to-one relation R: A — B:

(2-12) R'oR C ida
RocR™Y C 1idp

We should note here that our previous remarks about ternary, quater-
nary, etc. relations can also be carried over to functions. A function may
have as its domain a set of ordered n-tuples for any n, but each such n-tuple
will be mapped into a unique value in the range. For example, there is a
function mapping each pair of natural numbers into their sum.

Exercises

1. Let A = {b,c} and B = {2,3}.

(a) Specify the following sets by listing their members.
(i) AxB (iv) (AUB)xB
(ii) BxA (v) (AnB)x B
(i) Ax A (vi) (A-B)x(B- A)
(b) Classify each statement as true or false.
(i) (AxB)U(Bx A)=10
(ii) (A x A) C (A x B)
(iii) (c,c) C (A x A)
(iv) {(,3),(3,b)} C(Ax B)U(Bx 4)
(v) 0CAx A
(vi) {(b,2),{c,3)} is a relation from A to B
(vii) {(b,b)} is a relation in A
(c) Consider the following relation from A to (A U B):
R={(5,b),(5:2),(,2),{c,3))
(i) Specify the domain and range of R
(ii) Specify the complementary relation R’ and the inverse R~}

(iii) Is (R')~? (the inverse of the complement) equal to (R7YY
(the complement of the inverse)?
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2. Let A= {a,b,c}and B = {1,2}. How many distinct relations are there
from A to B? How many of these are functions from A to B? How
many of the functions are onto? one-to-one? Do any of the functions
have inverses that are functions? Answer the same questions for all
relations from B to A.

3. Let
R, = {<171>1<2:1>’<374>?<272>:<373>a<4:4>’<471>}
R2 = {<3i4>)<]‘72>7<1)4>7<2J3>7<274>7<173>}
(both relations in A, where 4 = {1,2, 3,4}).
(a) Form the composites Ry o Ry and R; o Ry. Are they equal?
(b) Show that R7! o R; # id4 and that R;' o Ry € ida4.
4. For the functions F and G in Figure 2-3:

(a) show that (Go F)™! = F~1oG™1.

(b) Show that the corresponding equation holds for relations R and
S in Figure 2-6.
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Properties of Relations

3.1 Reflexivity, symmetry, transitivity, and con-
nectedness

Certain properties of binary relations are so frequently encountered that
it is useful to have names for them. The properties we shall consider are
reflezivity, symmetry, transitivity, and connectedness. All these apply only
to relations in a set, i.e., in A x A for example, not to relations from A4 to
B, where B # A.

Reflexivity

Given a set A and a relation R in A, R is reflezive if and only if all the
ordered pairs of the form (z,z ) are in R for every z in A.

As an example, take the set A = {1,2,3} and the relation R, = {(1,1),
2,2),(3,3),(3,1)} in 4. R; is reflexive because it contains the ordered
pairs (1,1),(2,2), and (3,3). The relation Ry = {(1,1),(2,2)} is non-
reflexive since it lacks the ordered pair (3,3) and thus fails to meet the
definitional requirement that it contains the ordered pair {z,z) for every
z in A. Another way to state the definition of reflexivity is to say that a
relation R in A is reflexive if and only if id4, the identity relation in A, is
2 subset of R. The relation ‘has the same birthday as’ in the set of human
beings is reflexive.

A relation which fails to be reflexive is called nonreflexive, but if it con-
tains no ordered pair (z,z ) with identical first and second members, it is
said to be irreflerive. Rz = {(1,2),(3,2)} is an example of an irreflexive
relation in A. Irreflexivity is a stronger condition than nonreflexivity since

39
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every irreflexive relation is nonreflexive but not conversely. The relation ‘is
taller than’ in the set of human beings is irreflexive (therefore also nonre-
flexive), while the relation ‘is a financial supporter of’ is nonreflexive (but
not irreflexive, since some people are financially self-supporting). Note that
a relation R in A is nonreflexive if and only if id4 € R; it is irreflexive if and
only if Rnids = 0.
Symmetry

Given a set A and a binary relation R in A, R is symmetric if and only if
for every ordered pair { z,y) in R, the pair (y,z ) is also in R. It is important
to note that this definition does not require every ordered pair of 4 X 4 to
be in R. Rather for a relation R to be symmetric it must always be the case
that if an ordered pair is in R, then the pair with the members reversed is
also in R.

Here are some examples of symmetric relations in {1,2,3}:

(3_1) {< ) >><231>7<312>’<273>}
|

{(2,2)} is a symmetric relation because for every ordered pair in it, i.e.,
(2,2), it is true that the ordered pair with the first and second members
reversed, ie., {(2,2), is in the relation. Another example of a symmetric
relation is ‘is a cousin of’ on the set of human beings. If for some (z,y)
in R, the pair (y,z ) is not in R then R is nonsymmetric. The relation ‘is
a sister of’ on the set of human beings is nonsymmetric (since the second
member may be male. It is, however, a symmetric relation defined on the
set of human females).

The following relations in {1,2,3} are nonsymmetric:

(3—2) {<273>=<1>2>
{(3,3),(1,3)
£{1,2),(2,1)(2,2),{1,1%,{2,3)}

If it is never the case that for any (z,y) in R, the pair (y,z) is in
R, then the relation is called asymmetric. The relation ‘is older than’ is
asymmetric on the set of human beings. Note that an asymmetric relation

must be irreflexive (because nothing in the asymmetry definition requires z
and y to be distinct). The following are examples of asymmetric relations in

{1,2,3}:



REFLEXIVITY, SYMMETRY, TRANSITIVITY, AND CONNECTEDNESS 41

3_3) {<2’3>:<172>}
{(1,8),(2,3),(1,2)}
{(3,2)}

A relation is anti-symmetric if whenever both (z,y) and (y,z ) are in R,
c2en ¢ = y. This definition says only that if both (z,y) and (y,z ) are in
Z.then z and y are identical; it does not require (z,z ) € Rforallz € A. In
-zher words, the relation need not be reflexive in order to be anti-symmetric.

The following relations in {1, 2,3} are anti-symmetric.

-4) {(2,3),(1,1
{11).(2,2)}
{1,2)(23

Transitivity
A relation R is transitive if and only if for all ordered pairs (z,y) and

v.z) in R, the pair (z,z) is also in R.

Because there is no necessity for z, y, and z all to be distinct, the fol-
_owing relation meets the definition of transitivity,

-5) {(2,2)}

wherez =y =z = 2.

The relation given in (3-6) is not transitive,

3_6) {<273>><3:2>7<2=2>}

oecause (3,2) and (2,3) are members, but (3,3) is not.

Here are some more examples of transitive relations:

:-‘) {<172>:(273>’<173>}
{(1,2),(2,1),(1,1),(2,2)}
{(1,2),(2,3),(1,8),(8,2),(2,1),(3,1),(1,1),(2,2),(3,3)}

The relation ‘is an ancestor of’ is transitive in the set of human beings.
= a relation fails to meet the definition of tramsitivity, it is noniransitive. If
“or no pairs (z,y) and (y,z) in R, the ordered pair (z,z) is in R, then the
relation is intransitive. For example, the relation ‘is the mother of’ in the
set of human beings is intransitive.
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Relation (3-6) is nontransitive, as are the following two:

(3-8) {(1,2),(2,3)}
{<172>7<2 3>7<173>,<371>}

The first of these relations is also intransitive, as are the following relations:

(3_9) {<371>7<12>7<273>}
{(8,2),(1,3)}
Connectedness

A relation R in A is connected (or connez) if and only if for every two
distinct elements ¢ and y in A4, (z,y) € R or (y,z) € R (or both).

Note that the definition of connectedness refers, as does the definition
of reflexivity, to all the members of the set A. Further, the pairs (z,y)
and (y,z ) mentioned in the definition are explicitly specified as containing
nonidentical first and second members. Pairs of the form (z,z) are not
prohibited in a connected relation, but they are irrelevant in determining
connectedness.

The following relations in {1,2,3} are connected:

(3-10) {(1,2),(3,1),(3,2)}
{(1,1),(2,8),(1,2),(3,1),(2,2)}

The following relations in {1, 2,3}, which fail the definition, are noncon-
nected.

(3-11) {(1,2),(2,3)}
{(1,8),(3,1),(2,2),(3,2)}

It may be useful at this point to give some examples of relations speci-
fied by predicates and to consider their properties of reflexivity, symmetry,
transitivity, and connectedness.

(3-12) Ezample: Ry is the relation ‘is father of” in the set H of all human
beings. Rj is irreflexive (no one is his own father); asymmetric (if
z is y’s father, then it is never true that y is z’s father); intransitive
(if  is y’s father and y is 2’s father, then z is 2’s grandfather but
not z’s father); and nonconnected (there are distinct individuals z
and y in H such that neither ‘z is the father of y’ nor ‘y is the
father of z’ is true).
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Ezample: R is the relation ‘greater than’ defined in the set Z =
{1,2,3,4,...} of all the positive integers. Z contains an infinite
number of members and so does R, but we are able to determine
the relevant properties of R from our knowledge of the properties
of numbers in general. R is irreflexive (no number is greater than
itself); asymmetric (if z > y, then y ¥ z; transitive (if z > y
and y > 2, then z > z), and connected (for every distinct pair of
integers ¢ and y, either z > y or y > .

Ezample: R, is the relation defined by ‘z is the same age as y,’ in
the set H of all living human beings. R, is reflexive (everyone is
the same age as himself or herself); symmetric (if  is the same age
as y, then y is the same age as z); transitive (if z and y are the
same age and so are y and z, then z is the same age as z); and
nonconnected (there are distinct individuals in # who are not of
the same age).

Diagrams of relations

It may be helpful in assimilating the notions of reflexivity, symmetry and
iransitivity to represent them in relational diagrams. The members of the
relevant set are represented by labeled points (the particular spatial arrange-
ment of them is irrelevant). If z is related to y, ie. (z,y) € R, an arrow
connects the corresponding points. For example,

Q 0O

10.3/2

Figure 3-1: Relational diagram.

Figure 3-1 represents the relation

B=1{(1,2),(2,1),(2,2),(1,1),(2,8),(3,3)}

It is apparent from the diagram that the relation is reflexive, since every
point bears a loop. The relation is nonsymmetric since 3 is not related to 2
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whereas 2 is related to 3. It cannot be called asymmetric or antisymmetric,
however, since 1 is related to 2 and 2 is related to 1. It is nontransitive since
1 is related to 2 and 2 is related to 3, but there is no direct arrow from 1 to
3. The relation cannot be intransitive because of the presence of pairs such
as (1,1).

If a relation is connected, every pair of distinct points in its diagram will
be directly joined by an arrow. We see that R is no connected since there is
not direct connection between 1 and 3 in Figure 3-1.

3.3 Properties of inverses and complements

Given that a relation R has certain properties of reflexivity, symmetry, tran-
sitivity or connectedness, one can often make general statements about the
question whether these properties are preserved when the inverse R™! or
complement R’ of that relation is formed.

For example, take a reflexive relation R in A. By the definition of reflexive
relations, for every z € 4, (z,z) € R. Since R~ has all the ordered pairs
of R, but with the first and second members reversed, then every pair (z,z )
is also in R~!. So the inverse of R is reflexive also. The complement R’
contains all ordered pairs in A x A that are not in R. Since R contains
every pair of the form {z,z ) for any z € A, R’ contains none of them. The
complement relation is therefore irreflexive.

As another example, take a symmetric relation R in A. Does its com-
plement have this property? Let’s assume that the complement R’ is not
symmetric, and see what we can derive from that assumption. If R’ is not
symmetric, then there is some (z,y) € R' such that (y,z) & R, by the def-
inition of a nonsymmetric relation. Since (y,z) & R', (y,z ) must be in the
complement of R/, which is R itself. Because R is symmetric, {z,y) must
also be in R. But one and the same ordered pair (z,y) cannot be both in R
and in its complement R', so the assumption that the complement R’ is not
symmetric leads to an absurd conclusion. That means that the assumption
cannot be true and the complement R’ must be symmetric after all. If Ris a
symmetric relation in A, then the complement R’ is symmetric and vice versa
(the latter follows from essentially the same reasoning with R’ substituted
for R). This mode of reasoning is an instance of what is called a reductio
ad absurdum proof in logic. It is characterized by making an assumption
which leads to a necessarily false conclusion; you may then conclude that
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zhe negation of that assumption is true. In Chapter 6 we will introduce rules
of inference which will allow such arguments to be made completely precise.

For sake of easy reference the table in Figure 3-2 presents a summary of
oroperties of relations and those of their inverses and complements. These
czn all be proved on the basis of the definitions of the concepts and the laws
o set theory. Since we have not yet introduced a formal notion of proof, we
w1l not offer proofs here, but it is a good exercise to convince yourself of
zhe facts by trying out a few examples, reasoning informally along the lines
“lustrated above.

R (not 0) R-1 R

reflexive reflexive irreflexive
irreflexive irreflexive reflexive
symmetric symmetric (R~} = R)  symmetric
asymmetric asymmetric non-symmetric
antisymmetric antisymmetric depends on R
transitive transitive depends on R
intransitive intransitive depends on R
connected connected depends on R

Figure 3-2: Preservation of properties of a
relation in its inverse and its complement.

3.4 [Equivalence relations and partitions

An especially important class of relations are the equivalence relations. They
are relations which are reflexive, symmetric and transitive. Equality is the
most familiar example of an equivalence relation. Other examples are ‘has
the same hair color as’, and ‘is the same age as’. The use of equivalence
relations on a domain serves primarily to structure a domain into subsets
whose members are regarded as equivalent with respect to that relation.

For every equivalence relation there is a natural way to divide the set on
which it is defined into mutually exclusive (disjoint) subsets which are called
equivalence classes. We write [z] for the set of all y such that (z,y) € R.
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Thus, when R is an equivalence relation, [z] is the equivalence class which
contains z. The relation ‘is the same age as’ divides the set of people into age
groups, i.e., sets of people of the same age. Every pair of distinct equivalence
classes is disjoint, because each person, having only one age, belongs to ex-
actly one equivalence class. This is so even when somebody is 120 years old,
and is the only person of that age, consequently occupying an equivalence
class all by himself. By dividing a set into mutually exclusive and collectively
exhaustive nonempty subsets we effect what is called a partitioning of that
set.

Given a non-empty set A, a partition of A is a collection of non-empty
subsets of A such that (1) for any two distinct subsets X and Y, X NY =0
and (2) the union of all the subsets in the collection equals A. The notion of
a partition is not defined for an empty set. The subsets that are members
of a partition are called cells of that partition.

For example, let A = {a,b,c,d,e}. Then, P = {{a,c},{b,e},{d}} is
a partition of A because every pair of cells is disjoint: {a,c} N {b,e} = 0,
{b,e} N {d} = 0, and {a,c} N {d} = 0; and the union of all the cells equals
& Ul{a,ch {b,eh {d}} = A,

The following three sets are also partitions of A:

(3—15) Pl {{G“:c:d}’{b?e}}
P, {{a}:{b}a{c}7{d}a{e}}
P3 = {{a,b,c,d,e}}

P, is the trivial partition of A into only one set. Note however that the
definition of a partition is satisfied.

I

The following two sets are not partitions of A:

(3-16) C= {{a= b, C}, {b7d}> {e}}
D= {{a}$ {b, e}a {C}}

C fails the definition because {a,b,c}N{b,d} # 0 and D because J{{a},
{b,e}, {c}} #4

There is a close correspondence between partitions and equivalence rela-
tions. Given a partition of set A, the relation R = {{z,y) | z and y are in
the same cell of the partition} is an equivalence relation. Conversely, given a
reflexive, symmetric, and transitive relation R in A, there exists a partition
of A in which ¢ and y are in the same cell if and only if z and y are related by
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Z The equivalence classes specified by R are just the cells of the partition.
“z equivalence relation in A is sometimes said to induce a partition of A.

As an example, consider the set A = {1,2,3,4,5} and the equivalence

:_:7) R:{ ) >’<1= >: ’ >7<3’ >a(2’2)’<2:4>3(4>2>,<4a5>1
2,5

(1,1 3),(3,1 3
(4,4),(5,2),(5,4),(5,5),(2,5)}

which the reader can verify to be reflexive, symmetric, and transitive. In
s relation 1 and 3 are related among themselves in all possible ways, as
2,4, and 5, but no members of the first group are related to any member
Z the second group. Therefore, R defines the equivalence classes {1,3} and
'2.4,5}, and the corresponding partition induced on A is

[

Y

:-18) Pp={{1,3},{2,4,5}}

Given a partition such as

:’19) Q = {{1:2}:{3>5}: {4}}

ize relation Rq consisting of all ordered pairs (z,y) such that z and y are
= the same cell of the partition is as follows:

3-20) Rg = {<1>1)7(172)’<2,1>’<2a2>:(373)7<375>)(5a3>a(5{5>s<474>}

Rg is seen to be reflexive, symmetric, and transitive, and it is thus an
=zuivalence relation.

Another example is the equivalence relation ‘is on the same continent
zs” on the set A = {France, Chile, Nigeria, Ecuador, Luxembourg, Zambia,
Shana, San Marino, Uruguay, Kenya, Hungary}. It partitions A into three
=quivalence classes: (1) A; = {France, Luxembourg, San Marino, Hungary},
2) Ay = {Chile, Ecuador, Uruguay} and (3) A3 = {Nigeria, Zambia, Ghana,
Henya}.

3.5 Orderings

An order is a binary relation which is transitive and in addition either (i)
s=flexive and antisymmetric or else (ii) irreflexive and asymmetric. The
“ormer are weak orders; the latter are strict (or strong).
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To illustrate, let A = {a,b,c,d}. The following are all weak orders in A:

(3 21) Rlz{(a,b),<a,c>,<a,d>,( >7<a>a>’< >< >’<dd>}
R2:{<b=a>7<b7b>a<aaa>7< >)<d1d>7< >7< >}
R3:{<d7c>’<d7b>a<d’a>a< b),{c,a),(a,a),(b 0),(ese),

(d,d),(b,a)}

These are represented in Figure 3-3 as relational diagrams, from which it
can be verified that each is indeed reflexive, antisymmetric, and transitive.

G
QS 000 A 0N

L b e R

S S
a\ o b a d c b a
G

°d (:‘.d

Figure 3-3:
Diagrams of the weak orders in (3-21).

To these weak orders there correspond the strict orders 57, S, and Sa,
respectively:

(3-22) 51—{<a>b>>( c)(a,d),(b,e)}
= {(b,a),{¢,b),(c,a)}
={(d,c),(d,b),{d,a),(c,b),(c,a),(b,a)}

These can be gotten from the weak orders by removing all the ordered
pairs of the form (z,z ). Conversely, one can make a strict order into a weak
order by adding the pairs of the form (z,z ) for every z in A.

As another example of an order, consider any collection of sets C' and a
relation R in C defined by R = {(X,Y )| X C Y} We have already noted
in effect (Chapter 1, section 4) that the subset relation is transitive and
reflexive. It is also antisymmetric, since for any sets X and ¥, if X C Y and
Y C X, then X =Y (this will be proved in Chapter 7). The corresponding
strict order is the ‘proper subset of’ relation in C.
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Figure 3—4:

Diagrams of the strict orders in (3-22).

Further, we saw in Example (3-13) that the relation R ‘greater than’ in
e set of positive integers is irreflexive, asymmetric and transitive. It is
zzerefore a strict order. (Problem: What relation defines the corresponding
weak order?)

Some terminology: if R is an order, either weak or strict, and (z,y) € R,
== say that z precedes y, z is a predecessor of y, y succeeds (or follows) z,
T y 1s a successor of z, these being equivalent locutions. If z precedes y
znd ¢ # y, then we say that z immediately precedes y or z is an immediate
sredecessor of y, etc., just in case there is no element z distinct from both
z 2nd y such that z precedes z and z precedes y. In other words, there is
=o other element between z and y in the order. Note that no element can
22 said to immediately precede itself since ¢ and y in the definition must be
Zistinct.

In R; and S; in (3-21) and (3-22), b is between a and c; therefore,
zlzhough a precedes ¢, a is not an immediate predecessor of ¢. In Ry and Ss,
- is an immediate predecessor of b, and b is an immediate predecessor of a.

In diagramming orders it is usually simpler and more perspicuous to
connect pairs of elements by arrows only if one is an immediate predecessor
=f the other. The remaining connection can be inferred from the fact that
the relation is transitive. In order to distinguish weak from strict orders,
Sowever, it is necessary to include the ‘reflexive’ loops in weak orders. Di-
zgrammed in this way, the orders in (3-21) would appear as in Figure 3-5.
The diagrams of the corresponding strict orders would be identical except
or the absence of the loops on each element.

There is also a useful set of terms for elements which stand at the ex-
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Figure 3-5: Immediate predecessor diagrams
of the orders in (3-21).

tremes of an order. Given an order R in a set A,

1. an element z in A is minimal if and only if there is no other element
in A which precedes z (examples: a in Ry and S;; ¢ and d in R, and
Sy; din R3 and S3)

2. an element z in A is least if and only if z precedes every other element
in A (examples: a in Ry and S1; din R3 and S3)

3. an element z in A is mazimal if and only if there is no other element
in A which follows z (examples: ¢ and d in Ry and S;; a and d in R,
and S3; a in Rz and S3)

4. an element z in A is greatest if and only if = follows every other element
in A (examples: a in R3 and S3).

Note that a in R; and S; is both a minimal and a least element, while
c and d in these same orders are both maximal but not greatest (¢ does
not follow d, for example). Element d in R» and S, is both minimal and
maximal but neither greatest nor least. The order defined by R in Example
(3-13) has 1 as a maximal and greatest element (it follows all other elements
and has no successors) but there is no minimal or least element in the order.
Observe here that the form ‘greatest’ as used technically about orders need
not coincide with the notions ‘greater than ’ or ‘greatest’ in the realm of
numbers.

A least element, if there is one in an order, is unique (if there were
two, each would have to precede the other, and this would violate either



3
i

EXERCISES 51

zsymmetry or antisymmetry), and similarly for a greatest element. There
==7 be more than one minimal element, however (e.g., ¢ and d in R, and
=; zbove), and more than one maximal element. An order might have none
¢ these; the relation ‘greater than’ in the set of all positive and negative
zegers and zero, {0,1,-1,2,-1,...} has no maximal, minimal, greatest or
‘=23t elements.

i

If an order, strict or weak, is also connected, then it is said to be a total or
=zar order. Examples are Rz and S3 above and the relation R of Example
>-13). Their immediate predecessor diagrams show the elements arranged
= = single chain. Order R; is not total since d and ¢ are not related, for
=zample. Often orders in general are called partial orders or partially ordered

#zis. The terminology is unfortunate, since it then happens that some partial
cwZers are total, but it is well established nonetheless, and we will sometimes

r== it in the remainder of this book.

Finally, we mention some other frequently encountered notions pertain-
=z 1o orders. A set A is said to be well-ordered by a relation R if R is a
=2zl order and, further, every subset of A has a least element in the order-
=z relation. The set of natural numbers N = {0,1,2,3,...} is well-ordered
=7 the ‘is less than’ relation (it is a total order, and every subset of N will
zzve a least element when ordered by this relation). The set of integers
I=4{0,1,-1,2,-2,...}, on the other hand, is not well-ordered by that rela-
=on, since the negative integers get smaller ‘ad infinitum’. Note that every
“zite linearly ordered set must be well-ordered.

A relation R in A is dense if for every (z,y) € R, ¢ # y, there exists
= member z € A, z # z and y # z, such that (z,z) € R and (2,y) € R.
Tensity is an important property of the real numbers which we can think
=% 25 all the points lying on a horizontal line of infinite extent. The relation
= greater than’ is not dense on the natural numbers, but it is dense on the
-=z! numbers.

Exercises

(a) Determine the properties of the following relations on the set of
all people. In each case, make the strongest possible statement,
e.g. call a relation irreflexive whenever possible rather than non-
reflexive.

(i) is a child of
(ii) is a brother of
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(iii) is a descendant of
(iv) is an uncle of (assuming that one may marry one’s aunt or
uncle)

(b) Which of your answers would be changed if these relations were
defined in the set of all male human beings?

. Investigate the properties of each of the following relations. If any

one is an equivalence relation, indicate the partition it induces on the
appropriate set. (If you do not know the concepts, try to find some rea-
sonable assumptions, state them explicitly, and do the exercise based
on those).

(a) M = {(z,y) | = and y are a minimal pair of utterances of
English}

(b) C = {(z,y) | z and y are phones of English in complementary
distribution}

(¢) F={(z,y) |z and y are phones of English in free variation}
(d) A={(z,y)|zandyareallophones of the same English phoneme}

(e) Q is the relation defined by ‘X is a set having the same number
of members as Y’ in some appropriate collection of sets.

. Let A ={1,2,3,4}.

(a) Determine the properties of each of the following relations, its
inverse and its complement. If any of the relations happens to be
an equivalence relation, show the partition that is induced on A.

R, = {<171>:<271>:(374>7(272>><373>7<474>1<471>}

Ry, = {<374>:<172>a<1)4>’<273>7<234>7<1>3>}

Ry = {<2,4>a<3’1)7<3>4>)<272>7<1a3>7<4>3>a<4v2>}

Ry = {<171>:<274>a<1a3>><272>a<3:1>>(4’4>’<3’3>»(472>}

(b) Give the equivalence relation that induces the following partition
on 4: P = {{1},{2,3}, {4}}.

(c) How many distinct partitions of A are possible?

4. What is wrong with the following reasoning that reflexivity is a conse-

quence of symmetry and transitivity? (Birkhof & MacLane (1965)). If
(z,y) € R, then (y,z ) € R, since we assume R is symmetric. If both
(z,y) and (y,z ) are in R, then (z,z ) must be in R by transitivity.
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5. Let A ={1,2,3,5,6,10,15,30} and let R be a relation in A defined as
follows:

R ={(z,y) |z divides y without remainder}
(a) List the members of R, and show that it is a weak partial order
but not a total order.

(b) Construct an immediate predecessor diagram for this order and
identify any maximal, minimal, greatest, and least elements.

(c) Do the same for the set p(B), where B = {a, b, ¢}, and the relation
‘is a subset of’.



