

1

A Practical Guide to Building OWL Ontologies

Using Protégé 5.5 and Plugins

Edition 3.2

8 October 2021

Michael DeBellis

This is a revised version of the Protégé 4 Tutorial version 1.3 by Matthew Horridge. Previous versions of

the tutorial were developed by Holger Knublauch , Alan Rector , Robert Stevens, Chris Wroe, Simon

Jupp, Georgina Moulton, Nick Drummond, and Sebastian Brandt.

This work was conducted using the Protégé resource, which is supported by grant GM10331601 from the

National Institute of General Medical Sciences of the United States National Institutes of Health.

Chapters 3-5 are based on the original tutorial. I have updated the tutorial to be consistent with Protégé 5.

I have also made some changes to address some of the most common issues I’ve seen new users grapple

with, to remove some of the dated information about older frame-based versions of Protégé, and various

miscellaneous changes. Chapters 6-11 are new. I have added new sections for technologies such as

SWRL, SPARQL and SHACL as well as some details on concepts such as IRIs and namespaces.

Thanks to Matthew Horridge and everyone who worked on the previous tutorials. Special thanks to

Lorenz Buehmann who helped me work out a thorny problem as I developed the revised example and to

André Wolski for help with the SHACL plugin. Special thanks to Dick Ooms, Colin Pilkington, and Livia

Pinera for their excellent detailed feedback on previous versions of the tutorial. Special thanks to Jans

Aasman, Yan Xu, and everyone at Franz Inc. for their help utilizing AllegroGraph and Gruff for this

tutorial and for a new tutorial available at: https://www.michaeldebellis.com/post/the-people_example-

ontology Also, thanks to everyone on the Protégé user support email list.

Note: this document may get updates frequently. It is a good idea to check my blog at:

https://www.michaeldebellis.com/post/new-protege-pizza-tutorial to make sure you have the latest

version.

If you have questions or comments, feel free to contact me at mdebellissf@gmail.com

https://www.michaeldebellis.com/post/the-people_example-ontology
https://www.michaeldebellis.com/post/the-people_example-ontology
https://www.michaeldebellis.com/post/new-protege-pizza-tutorial
mailto:mdebellissf@gmail.com

2

Contents
Chapter 1 Introduction ... 4

1.1 Licensing ... 4

1.2 Conventions ... 4

Chapter 2 Requirements and the Protégé User Interface ... 6

Chapter 3 What are OWL Ontologies? ... 6

3.1 Components of OWL Ontologies ... 6

3.1.1 Individuals .. 7

3.1.2 Properties .. 8

3.1.3 Classes .. 8

Chapter 4 Building an OWL Ontology ... 10

4.1 Named Classes... 13

4.2 Using a Reasoner ... 15

4.4 Using Create Class Hierarchy .. 17

4.5 Create a PizzaTopping Hierarchy ... 19

4.6 OWL Properties ... 22

4.7 Inverse Properties .. 23

4.8 OWL Object Property Characteristics .. 24

4.8.1 Functional Properties... 24

4.8.2 Inverse Functional Properties .. 25

4.8.3 Transitive Properties ... 25

4.8.4 Symmetric and Asymmetric Properties .. 25

4.8.5 Reflexive and Irreflexive Properties .. 26

4.8.6 Reasoners Automatically Enforce Property Characteristics .. 26

4.9 OWL Property Domains and Ranges .. 26

4.10 Describing and Defining Classes .. 29

4.10.1 Property restrictions .. 29

4.10.2 Existential Restrictions .. 31

4.10.3 Creating Subclasses of Pizza ... 33

4.10.4 Detecting a Class that can’t Have Members ... 37

4.11 Primitive and Defined Classes (Necessary and Sufficient Axioms) ... 38

4.12 Universal Restrictions .. 41

4.13 Automated Classification and Open World Reasoning .. 42

3

4.14 Defining an Enumerated Class ... 44

4.15 Adding Spiciness as a Property .. 45

4.16 Cardinality Restrictions .. 46

Chapter 5 Datatype Properties ... 48

5.1 Defining a Data Property ... 48

5.2 Customizing the Protégé User Interface.. 50

Chapter 6 Adding Order to an Enumerated Class ... 58

Chapter 7 Names: IRI’s, Labels, and Namespaces .. 60

Chapter 8 A Larger Ontology with some Individuals ... 62

8.1 Get Familiar with the Larger Ontology ... 63

Chapter 9 Queries: Description Logic and SPARQL .. 66

9.1 Description Logic Queries ... 66

9.2 SPARQL Queries... 67

9.21 Some SPARQL Pizza Queries .. 67

9.22 SPARQL and IRI Names ... 70

Chapter 10 SWRL and SQWRL .. 72

Chapter 11 SHACL ... 76

11.1 OWA and Monotonic Reasoning .. 76

11.2 The Real World is Messy ... 76

11.3 Basic SHACL Concepts ... 77

11.4 The Protégé SHACL Plug-In .. 77

Chapter 12 Web Protégé .. 83

Chapter 13 Conclusion: Some Personal Thoughts and Opinions ... 88

Chapter 14 Bibliography.. 89

14.1 W3C Documents .. 89

14.2 Web Sites, Tools, And Presentations. ... 89

14.3 Papers .. 89

14.4 Books .. 90

14.5 Vendors ... 90

4

Chapter 1 Introduction

This introduces Protégé 5 for creating OWL ontologies as well as various plugins. If you have questions

specific to this tutorial, please feel free to email me directly: mdebellissf@gmail.com However, if you

have general questions about Protégé, OWL, or plugins you should subscribe to and send an email to the

User Support for Protégé and Web Protégé email list. This list has many people (including me) who

monitor it and can contribute their knowledge to help you understand how to get the most out of this

technology. To subscribe to the list, go to: https://protege.stanford.edu/support.php and click on the first

orange Subscribe button. That will enable you to subscribe to the list and give you the email to send

questions to.

This chapter covers licensing and describes conventions used in the tutorial. Chapter 2 covers the

requirements for the tutorial and describes the Protégé user interface. Chapter 3 gives a brief overview of

the OWL ontology language. Chapter 4 focuses on building an OWL ontology with classes and object

properties. Chapter 4 also describes using a Description Logic Reasoner to check the consistency of the

ontology and automatically compute the ontology class hierarchy.

Chapter 5 describes data properties. Chapter 6 describes design patterns and shows one design pattern:

adding an order to an enumerated class. Chapter 7 describes the various concepts related to the name of

an OWL entity.

Chapter 8 introduces an extended version of the Pizza tutorial developed in chapters 1-7. This ontology

has a small number of instances and property values already created which can be used to illustrate the

tools in the later chapters for writing rules, doing queries, and defining constraints.

Chapter 9 describes two tools for doing queries: Description Logic queries and SPARQL queries. Chapter

10 introduces the Semantic Web Rule Language (SWRL) and walks you through creating SWRL and

SQWRL rules. Chapter 11 introduces the Shapes Constraint Language (SHACL) and discusses the

difference between defining logical axioms in Description Logic and data integrity constraints in

SHACL. Chapter 12 has some concluding thoughts and opinions and Chapter 13 provides a bibliography.

1.1 Licensing

This document is freely available under the Creative Commons Attribution-ShareAlike 4.0 International

Public License. I typically distribute it as a PDF but if you want to make your own version send me an

email and I will send you the Word version. For details on licensing see:

https://creativecommons.org/licenses/by-sa/4.0/legalcode

1.2 Conventions

Class, property, rule, and individual names are written in Consolas font like this. The term used for

any such construct in Protégé and in this document is an Entity. Individuals and classes can also be

referred to as objects.

Names for user interface tabs, views, menu selections, buttons, and text entry are highlighted like this.

Any time you see highlighted text such as File>Preferences or OK or PizzaTopping it refers to something

that you should or optionally could view or enter into the user interface. If you ever aren’t sure what to

do to accomplish some task look for the highlighted text. Often, as with PizzaTopping the text you

enter into a field in the Protégé UI will be the name of a class, property, etc. In those cases, where the

mailto:mdebellissf@gmail.com
https://protege.stanford.edu/support.php
https://creativecommons.org/licenses/by-sa/4.0/legalcode

5

name is meant to be entered into a field it will only be highlighted rather than highlighted and printed in

Consolas font.

Menu options are shown with the name of the top-level menu, followed by a > followed by the next level

down to the desired selection. For example, to indicate how to open the Individuals by class tab under the

Tabs section in the Window menu the following text would be used: Window>Tabs> Individuals by

class.

When a word or phrase is emphasized, it is shown in italics like this.

Exercises are presented like this:

Exercise 1: Accomplish this

1. Do this.

2. Then do this.

3. Then do this.

Potential pitfalls and warnings are presented like this.

Tips and suggestions related to using Protégé are presented like this.

Explanations as to what things mean are presented like this.

General notes are presented like this.

Vocabulary explanations and alternative names are presented like this.

6

Chapter 2 Requirements and the Protégé User Interface

In order to follow this tutorial, you must have Protégé 5, which is available from the Protégé website,1

and some of the Protégé Plugins which will be described in more detail below. For now, just make sure

you have the latest version of Protégé. At the time this is being written the latest version is 5.5 although

the tutorial should work for later versions as well.

The Protégé user interface is divided up into a set of major tabs. These tabs can be seen in the

Window>Tabs option. This option shows all the UI tabs that are currently loaded into the Protégé

environment. Any tabs that are currently opened have a check mark next to them. To see a tab that is not

visible just select it from the menu and it will be added to the top with the other major tabs and its menu

item will now be checked. You can add additional major tabs to your environment by loading plugins. For

example, when we load the SHACL4Protégé plugin the SHACLEditor will be added to the menu.

Each major tab consists of various panes or as Protégé calls them views. Each view can be resized or

closed using the icons in the top right corner of every view. The views can also be nested as sub-tabs

within each major tab. When there could potentially be confusion between a tab that is a screen all its own

(is under the Window>Tabs option) and a view that is a sub-tab we will call the screen tab a major tab.

There are many views that are not in the default version of Protégé that can be added via the

Window>Views option. The additional views are divided into various categories such as

Window>Views>Individual views. Section 5.2 will show an example of adding a new view to a major

tab.

Chapter 3 What are OWL Ontologies?

Ontologies are used to capture knowledge about some domain of interest. An ontology describes the

concepts in the domain and also the relationships that hold between those concepts. Different ontology

languages provide different facilities. The most recent development in standard ontology languages is

OWL from the World Wide Web Consortium (W3C). A good primer on the basic concepts of OWL can

be found at: https://www.w3.org/TR/owl2-primer/

OWL makes it possible to describe concepts in an unambiguous manner based on set theory and logic.

Complex concepts can be built up out of simpler concepts. The logical model allows the use of a reasoner

which can check whether all of the statements and definitions in the ontology are mutually consistent and

can also recognize which concepts fit under which definitions. The reasoner can therefore help to

maintain the hierarchy correctly. This is particularly useful when dealing with cases where classes can

have more than one parent. The reasoner can also infer additional information. For example, if two

properties are inverses only one value needs to be asserted by the user and the inverse value will be

automatically inferred by the reasoner.

3.1 Components of OWL Ontologies

An OWL ontology consists of Classes, Properties, and Individuals. OWL ontologies are an

implementation of Description Logic (DL) which is a decidable subset of First Order Logic. A class in

OWL is a set, a property is a binary relation, and an individual is an element of a set. Other concepts from

set theory are also implemented in OWL such as Disjoint sets, the Empty set (owl:Nothing), inverse

1 http://protege.stanford.edu

https://www.w3.org/TR/owl2-primer/
http://protege.stanford.edu/

7

relations, transitive relations, and many more. An understanding of the basic concepts of set theory will

help the user get the most out of OWL but is not required. One of the benefits of Protégé is that it presents

an intuitive GUI that enables domain experts to define models without a background in set theory.

However, developers are encouraged to refresh their knowledge on logic and set theory. A good source is

the first 3 chapters in Elements of the Theory of Computation by Lewis and Papadamitrious. Another

good source is the PDF document Overview of Set Theory available at:

https://www.michaeldebellis.com/post/owl-theoretical-basics

3.1.1 Individuals

Individuals represent objects in the domain of interest. An important difference between OWL and most

programming and knowledge representation languages is that OWL does not use the Unique Name

Assumption (UNA). This means that two different names could actually refer to the same individual. For

example, “Queen Elizabeth”, “The Queen” and “Elizabeth Windsor” might all refer to the same

individual. In OWL, it must be explicitly stated that individuals are the same as each other, or different

from each other. Figure 3.1 shows a representation of some individuals in a domain of people, nations,

and relations — in this tutorial we represent individuals as diamonds.

Figure 3.1: Representation of Individuals

Michael

Jenna

Diane

Tim

USA

India

Italy

Individuals are also known as instances. Individuals can be referred to as instances of classes.

Figure 3.2: Representation of Properties

Michael

Biswanath

livesIn
India

hasFriend

https://www.michaeldebellis.com/post/owl-theoretical-basics

8

3.1.2 Properties

Properties are binary relations between individuals. I.e., properties link two individuals together. For

example, the property hasFriend might link the individual Biswanath to the individual Michael, or

the property hasChild might link the individual Michael to the individual Oriana. Properties can have

inverses. For example, the inverse of hasChild is hasParent. Properties can be limited to having a

single value – i.e., to being functional. They can also be transitive or symmetric. These property

characteristics are explained in detail in Section 4.8. Figure 3.2 shows a representation of some properties.

3.1.3 Classes

OWL classes are sets that contain individuals. They are described using formal (mathematical)

descriptions that rigorously define the requirements for membership of the class. For example, the class

Cat would contain all the individuals that are cats in our domain of interest.2 Classes may be organized

into a superclass-subclass hierarchy, which is also known as a taxonomy. However, taxonomies are often

trees. I.e., each node has only one parent node. Class hierarchies in OWL are not restricted to be trees and

multiple inheritance can be a powerful tool to represent data in an intuitive manner.

Subclasses specialize (aka are subsumed by) their superclasses. For example, consider the classes Animal

and Dog – Dog might be a subclass of Animal (so Animal is the superclass of Dog). This says that All

dogs are animals, All members of the class Dog are members of the class Animal. OWL and Protégé

2 Individuals can belong to more than one class and classes can have more than one superclass. Unlike OOP where
multiple inheritance is typically unavailable or discouraged it is common in OWL.

Properties are similar to properties in Object-Oriented Programming (OOP). However, there are

important differences between properties in OWL and OOP. The most important difference is that OWL

properties are first class entities that exist independent of classes. OOP developers are encouraged to

read: https://www.w3.org/2001/sw/BestPractices/SE/ODSD/

Michael

Oriana

hasChild

Person Country

USA

Italy
India

livesIn

Buddy

Rover

Dog

hasPet

Figure 3.3: Representation of Classes containing Individuals

https://www.w3.org/2001/sw/BestPractices/SE/ODSD/

9

provide a language that is called Description Logic or DL for short. One of the key features of DL is that

these superclass-subclass relationships (aka subsumption relationships) can be computed automatically by

a reasoner – more on this later. Figure 3.3 shows a representation of some classes containing individuals –

classes are represented as ovals, like sets in Venn diagrams.

In OWL classes can be built up of descriptions that specify the conditions that must be satisfied by an

individual for it to be a member of the class. How to formulate these descriptions will be explained as the

tutorial progresses.

10

Chapter 4 Building an OWL Ontology

This chapter describes how to create an ontology of Pizzas. We use Pizzas because it is something almost

everyone is familiar with.

Exercise 1: Create a new OWL Ontology

1. Start Protégé. When Protégé opens for the first time each day it puts up a screen of all the available

plugins. You can also bring this up at any time by using File>Check for plugins. You won’t need any

plugins at this point of the tutorial so just click the Not now button.

2. The Protégé user-interface consists of several tabs such as Active ontology, Entities, etc. When you

start Protégé you should be in the Active Ontology tab. This is for overview information about the entire

ontology. Protégé always opens with a new untitled ontology you can start with. Your ontology should

have an IRI something like: http://www.semanticweb.org/yourname/ontologies/2020/4/untitled-ontology-

27 Edit the name of the ontology (the part after the last “/” in this case untitled-ontology-27) and change it

to something like PizzaTutorial. Note: the Pizza ontology IRIs shown below (e.g., figure 4.3) show the

IRI after I edited the default that Protégé generated for me. Your IRI will look different and will be based

on your name or the name of your organization.

3. Now you want to save your new ontology. Select File>Save. This should bring up a window that says:

Choose a format to use when saving the ‘PizzaTutorial’ ontology. There is a drop down menu of formats

to use. The default RDF/XML Syntax should be selected by clicking the OK button. This should bring up

the standard dialog your operating system uses for saving files. Navigate to the folder you want to use and

then type in the file name, something like Pizza Tutorial and select Save.

__

The next step is to set some preferences related to the names of new entities. Remember than in Protégé

any class, individual, object property, data property, annotation property, or rule is referred to as an entity.

The term name in OWL can actually refer to two different concepts. It can be the last part of the IRI3 or it

can refer to the annotation property (usually rdfs:label) used to provide a more user friendly name for

the entity. We will discuss this in more detail below in chapter 7. For now, we just want to set the

parameters correctly so that future parts of the tutorial (especially the section on SPARQL queries) will

work appropriately.

3 An IRI is similar to a URL. This will be discussed in detail below in chapter 7.

As with any file you work on it is a good idea to save your work at regular intervals so that if

something goes wrong you don’t lose your work. At certain points in the tutorial where saving

is especially important the tutorial will prompt you to do so but it is a good idea to save your

work often, not just when prompted.

11

Exercise 2: Set the Preferences for New Entities and Rendering

1. Go to File>Preferences in Protégé. This will bring up a new window with lots and lots of different tabs.

Click on the New entities tab. This will bring up a tab that looks similar to figure 4.1. The top part of that

tab is a box labeled Entity IRI. It should be set with the parameters as shown in figure 4.1. I.e., Starts

with Active ontology IRI. Followed by #. Ends with User supplied name. If the last parameter is set to

Auto-generated name change it to User supplied name. That is the parameter most likely to be different

but also check the other two as well.

2. Now select the Renderer tab. It should look like figure 4.2. Most importantly, check that Entity

rendering is set to Render by entity IRI short name (ID) rather than Render by annotation property. Don’t

worry if this doesn’t completely make sense at this point. The issues here are a bit complex and subtle so

we defer them until after you have an understanding of the basic concepts of what an OWL ontology is.

We will have a discussion of these details below in chapter 7. For now you just need to make sure that the

preferences are set appropriately to work with the rest of the tutorial.

__

Figure 4.1: The New entities tab

12

Figure 4.2 Renderer tab

Figure 4.3: The Active Ontology Tab with a New Comment

13

Exercise 3: Add a Comment Annotation to Your Ontology

1. Make sure you are in the Active Ontology tab. In the view just below the Ontology IRI and Ontology

Version IRI fields find the Annotations option and click on the + sign. This will bring up a menu to create

a new annotation on the ontology.

2. The rdfs:comment annotation should be highlighted by default. If it isn’t highlighted click on it. Then

type a new comment into the view to the right. Something like A tutorial ontology for the Pizza domain.

3. Click OK. Your Active Ontology tab should like Figure 4.3.

Figure 4.4: The Class Hierarchy View Options

4.1 Named Classes

The main building blocks of an OWL ontology are classes. In Protégé 5, editing of classes can be done in

the Entities tab. The Entities tab has a number of sub-tabs. When you select it, the default should be the

Class hierarchy view as shown in Figure 4.5.4 All empty ontologies contains one class called owl:Thing.

OWL classes are sets of individuals. The class owl:Thing is the class that represents the set containing

all individuals. Because of this all classes are subclasses of owl:Thing.

4 Each of the sub-tabs in the Entities tab also exists as its own major tab. In the tutorial we will refer to tabs like the
Class hierarchy tab or Object properties tab and it is up to the user whether to access them from the Entities tab or
to create them as independent tabs.

Add Subclass

Add Sibling Class

Delete Class

14

Exercise 4: Create classes: Pizza, PizzaTopping, and PizzaBase

1. Navigate to the Entities tab5 with the Class hierarchy view selected. Make sure owl:Thing is selected.

2. Press the Add Subclass icon shown in figure 4.4. This button creates a new subclass of the selected

class. In this case we want to create a subclass of owl:Thing.

3. This should bring up a dialog titled Create a new class with a field for the name of the new class. Type

in Pizza and then select OK.

4. Repeat the previous steps to add the classes PizzaTopping and PizzaBase ensuring that

owl:Thing is selected before using the add subclass icon so that all your classes are subclasses of

owl:Thing. Your user interface should now look like figure 4.5. Don’t worry that some of the classes

are highlighted in red. That is because the reasoner hasn’t run yet. We will address this shortly.

Figure 4.5 The Classes Sub-Tab in the Entities Tab

5 The Entities tab is a big tab that has tabs like Classes, Object properties, Data properties, etc. as sub-tabs. Each of
these sub-tabs is also a major tab (a tab accessible from the Window>Tabs option) that can be created on its own.
Since I took screen snapshots at various times I wasn’t always completely consistent. Sometimes I used Classes as a
sub-tab of the Entities tab and sometimes as a major tab on its own. Also, at different points in time I had other
tabs open depending on what other work I was doing. Thus, your UI won’t look identical to the figures. There may
be additional tabs in the figure that aren’t in your UI or vice versa.

15

4.2 Using a Reasoner

You may notice that one or more of your classes is highlighted in red as in Figure 4.5. This is because we

haven’t run the reasoner yet so Protégé has not been able to verify that our new classes have no

inconsistencies. When just creating classes and subclasses in a new ontology there is little chance of an

inconsistency. However, it is a good idea to run the reasoner often. When there is an inconsistency the

sooner it is discovered the easier it is to fix. One common mistake that new users make is to do a lot of

development and then run the reasoner only to find that there are multiple inconsistencies which can make

debugging significantly more difficult. So let’s get into the good habit of running the reasoner often.

Protégé comes with some reasoners bundled in and others available as plugins. Since we are going to

write some SWRL rules later in the tutorial, we want to use the Pellet reasoner. It has the best support for

SWRL at the time this tutorial is being written.

Exercise 5: Install and Run the Pellet Reasoner

1. Check to see if the Pellet reasoner is installed. Click on the Reasoner menu. At the bottom of the menu

there will be a list of the installed reasoners such as Hermit and possibly Pellet. If Pellet is visible in that

menu then select it and skip to step 3.

2. If Pellet is not visible then do File>Check for plugins and select Pellet from the list of available plugins

and then select Install. This will install Pellet and you should get a message that says it will take effect the

next time you start Protégé. Do a File>Save to save your work then quit Protégé and restart it. Then go to

File>Open recent. You should see your saved Pizza tutorial in the list of recent ontologies. Select it to

load it. Now you should see Pellet under the Reasoner menu and be able to select it so do so.

3. With Pellet selected in the Reasoner menu execute the command Reasoner>Start reasoner. The

reasoner should run very quickly since the ontology is so simple. You will notice that the little text

message in the lower right corner of the Protégé window has changed to now say Reasoner active. The

next time you make a change to the ontology that text will change to say: Reasoner state out of sync with

active ontology. With small ontologies the reasoner runs very quickly, and it is a good idea to get into the

habit of running it often, as much as after every change.

4. It is possible that one or more of your classes will still be highlighted in red after you run the reasoner.

If that happens do: Window>Refresh user interface and any red highlights should go away. Whenever

your user interface seems to show something you don’t expect the first thing to do is to try this command.

There are no mandatory naming conventions for OWL entities. In chapter 7, we will discuss

names and labels in more detail. A best practice is to select one set of naming conventions and

then abide by that convention across your organization. For this tutorial we will follow the

standard where class and individual names start with a capital letter for each word and do not

contain spaces. This is known as CamelBack notation. For example: Pizza, PizzaTopping,

etc. Also, we will follow the standard that class names are always singular rather than plural.

E.g., Pizza rather than Pizzas, PizzaTopping rather than PizzaToppings.

16

5. One last thing we want to do is to configure the reasoner. By default, the reasoner does not perform all

possible inferences because some inferences can take a long time for large and complex ontologies. In

this tutorial we will always be dealing with small and simple ontologies so we want to see everything the

reasoner can do. Go to: Reasoner>Configure. This will bring up a dialog with several check boxes of

inferences that the reasoner can perform. If they aren’t all checked then check them all. You may receive

a warning that some inferences can take a lot of time, but you can ignore those since your ontology will

be small.

4.3 Disjoint Classes

Having added the classes Pizza, PizzaTopping, and PizzaBase to the ontology, we now want to say

that these classes are disjoint. I.e., no individual can be an instance of more than one of those classes. In

set theory terminology the intersection of these three classes is the empty set: owl:Nothing.

Exercise 6: Make Pizza, PizzaTopping, and PizzaBase disjoint from each other

1. Select the class Pizza in the class hierarchy.

2. Find the Disjoint With option in the Description view and select the (+) sign next to it. See the red

circle in figure 4.6.

3. This should bring up a dialog with two tabs: Class hierarchy and Expression editor. You want Class

hierarchy for now (we will use the expression editor later). This gives you an interface to select a class

that is identical to the Class hierarchy view. Use it to navigate to PizzaBase. Hold down the shift key and

select PizzaBase and PizzaTopping. Select OK.

4. Do a Reasoner>Synchronize reasoner. Then look at PizzaBase and PizzaTopping. You should see

that they each have the appropriate disjoint axioms defined to indicate that each of these classes is disjoint

with the other two.

17

Figure 4.6: The Disjoint Option in the Class Description View

4.4 Using Create Class Hierarchy

In this section we will use Tools>Create class hierarchy to create multiple classes at once.

OWL classes are assumed to overlap, i.e., by default they are not disjoint. This is often useful

because in OWL, unlike in most object-oriented models, multiple inheritance is not discouraged

and can be a powerful tool to model data. If we want classes to be disjoint, we must explicitly

declare them to be so. It is often a good development strategy to start with classes that are not

disjoint and then make them disjoint once the model is more fully fleshed out as it is not always

obvious which classes are disjoint from the beginning.

18

Figure 4.7: The Create class hierarchy wizard

Exercise 7: Use the Create class hierarchy tool to create subclasses of PizzaBase

1. Select the class PizzaBase in the class hierarchy.

2. With PizzaBase selected use the Tools>Create class hierarchy menu option.

3. This should bring up a wizard that enables you to create a nested group of classes all at once. You

should see a window labeled Enter hierarchy where you can enter one name on each line. You can also

use the tab key to indicate that a class is a subclass of the class above it. For now we just want to enter

two subclasses of PizzaBase: ThinAndCrispyBase and DeepPanBase. One of the things the wizard

does is to automatically add a prefix or suffix for us. So just enter ThinAndCrispy, hit return and enter

DeepPan. Then in the Suffix field add Base. Your window should look like figure 4.7.

4. Select Continue. This will take you to a window that asks if you want to make sibling classes disjoint.

The default should be checked (make them disjoint) which is what we want in this case (a base can’t be

both deep pan and thin) so just select Finish. Synchronize the reasoner. Your class hierarchy should now

look like figure 4.8.

19

Figure 4.8: The New Class Hierarchy

4.5 Create a PizzaTopping Hierarchy

We will use Tools>Create class hierarchy again but this time to create a more interesting hierarchy with

additional subclasses to model the subclasses of PizzaTopping.

Exercise 8: Create subclasses of PizzaTopping

1. Select the class PizzaTopping in the class hierarchy.

2. With PizzaTopping selected use the Tools>Create class hierarchy menu option.

3. This will once again bring up the wizard. We want all our toppings to end in Topping so enter Topping

in the Suffix field. Then create the nested structure as shown in figure 4.9. Use the Tab key to indent

classes where needed.

4. Select Continue. This will take you to the window that asks if you want to make sibling classes

disjoint. We do want this so leave the box checked and click Finish. Synchronize the reasoner. Your class

hierarchy should now look like figure 4.10.

20

Figure 4.9 Using Create class hieararchy to create PizzaTopping subclasses

21

Figure 4.10 The New PizzaTopping Class Hierarchy

So far, we have created some simple named classes and subclasses which hopefully seem

intuitive and obvious. However, what does it actually mean to be a subclass of something in

OWL? For example, what does it mean for VegetableTopping to be a subclass of

PizzaTopping? In OWL subclass means necessary implication. I.e., if VegetableTopping is a

subclass of PizzaTopping then all instances of VegetableTopping are also instances of

PizzaTopping. It is for this reason that we try to have standards such as having all

PizzaTopping classes end with the word “Topping”. Otherwise, it might seem we are saying

that anything that is a kind of Ham like the Ham in your sandwich is a kind of MeatTopping or

PizzaTopping which is not what we mean. For large ontologies strict attention to the naming

of classes and other entities can prevent potential confusion and bugs.

22

4.6 OWL Properties
OWL Properties represent relationships. There are three types of properties, Object properties, Data

properties and Annotation properties. Object properties are relationships between two individuals. Data

properties are relations between an individual and a datatype such as xsd:string or xsd:dateTime.

Annotation properties also usually have datatypes as values although they can have objects. An

annotation property is usually meta-data such as a comment or a label. In OWL only individuals can have

values for object and data properties, but any entity can have an annotation property value since meta-data

applies to all entities. Annotation properties usually can’t be reasoned about. For example, SWRL rules

which we will cover later cannot view or change the value of annotation properties. In this chapter we

will focus on Object properties. Data properties are described in Chapter 5. In the current version of the

tutorial we are only discussing the annotation property rdfs:label (see chapter 7) however they are

fairly intuitive.

Properties may be created using the Object Properties sub-tab of the Entities tab shown in figure 4.11.

Just as all OWL classes ultimately are a subclass of owl:Thing, all properties are ultimately a sub-

property of owl:topObjectProperty. A sub-property is similar to a subclass except it is about the

tuples in a property. For example, hasFather would be a sub-property of hasParent because all the

tuples in hasFather are in hasParent but not vice versa. E.g., if Sasha hasFather Barack then she

also hasParent Barack. However, she also hasParent Michelle but it is not the case that she

hasFather Michelle. Rather she hasMother Michelle, i.e., hasMother is also a sub-property of

hasParent.

The GUI for entering properties is also similar to that for entering classes. The first icon with one box

under another creates a sub-property of the selected property. The second icon showing two boxes at the

same level creates a sibling property to the selected property and the icon with an X through a box deletes

the selected property.

Exercise 9: Create some properties

1. Select the Object properties sub-tab of the Entities tab (see figure 4.11).

2. Make sure owl:topObjectProperty is selected. Click on the nested box icon at the left to create a

new sub-property of owl:topObjectProperty. When prompted for the name of the new property

type in hasIngredient.

3. Just as you can use a wizard to create multiple classes you can also use one to create multiple

properties. Select hasIngredient and then select Tools>Create object property hierarchy. Enter the new

property names hasTopping and hasBase. Select Continue and accept the default that the object properties

are not disjoint.

4. Synchronize the reasoner. Your window should now look like figure 4.11.

 For those familiar with the Entity-Relationship model, OWL object properties are similar to

relations and data properties are similar to attributes. Object properties are similar to

properties with a range of some class in OOP and data properties are similar to OOP properties

with a range that is a datatype.

23

Figure 4.11 Adding Some Object Properties

4.7 Inverse Properties
Each object property may have a corresponding inverse property. If some property links individual a to

individual b then its inverse property will link individual b to individual a. For example, in figure 3.3 the

individual Michael hasPet Buddy. In this example hasPet is an object property that maps from a

Person to their Pet which are known as the domain and range of the property. Michael is an instance

of the Person class and Buddy is an instance of the Pet class. The hasPet property points from a

Person to that person’s Pet. The inverse property could be isPetOf which would be represented by a

link between the two individuals going the other way, from Buddy to Michael. Whenever possible it is

desirable to adhere to this type of naming standard with properties. Properties going in one direction as

hasProperty and their inverses as isPropertyOf.

Exercise 10: Create some inverse properties

1. Use the Object properties tab to create a new object property called isIngredientOf (this will be

the inverse property of hasIngredient). Make sure that isIngredientOf is a sibling property if

hasIngredient and a sub-property of owl:topObjectProperty.

2. Click on the Add icon (+) next to Inverse Of in the Description view for hasIngredient. You will

be presented with a window that shows a nested view of all the current properties. Select hasIngredient to

make it the inverse of isIngredientOf.

24

3. Select isIngredientOf and then Tools>Create object property hierarchy. Enter isToppingOf then on a

new line enter isBaseOf. As before, select Continue and leave the box for disjoint properties unchecked

and select Finish. Repeat step 2 to make isToppingOf the inverse of hasTopping and isBaseOf the

inverse of hasBase.

4. Synchronize the reasoner. Your window should now look like figure 4.12.

Figure 4.12 Inverse Properties

4.8 OWL Object Property Characteristics
OWL allows the meaning of properties to be enriched through the use of property characteristics. The

following sections discuss the various characteristics that properties may have. If you are familiar with

basic concepts of relations in set theory these characteristics will already be familiar to you. In figure 4.12

you can see the Characteristics: view for a property as a list of check boxes: Functional, Inverse

functional, Transitive, etc.

4.8.1 Functional Properties

If a property is functional, for a given individual, there can be at most one individual that is related to the

individual via the property. For example the property hasBirthMother -- someone can only have one

birth mother. If we say that the individual Jean hasBirthMother Peggy and we also say that the

individual Jean hasBirthMother Margaret, then because hasBirthMother is a functional property,

we can infer that Peggy and Margaret must be the same individual. This can happen in OWL because

25

unlike many languages it does not have a unique names assumption. Unless specifically stated otherwise,

the reasoner can infer that two individuals with different names are actually the same individual. It should

be noted however, that if Peggy and Margaret were explicitly stated to be two different individuals then

the above statements would lead the reasoner to infer that there was an inconsistency in the ontology. We

will discuss names more in chapter 7.

In section 4.16 we will discuss cardinality restrictions on properties. E.g., that the hasWheel property of

the Bicycle class has a minimum of 2 (allowing for training wheels) whereas hasWheel for the

Unicycle class is defined to be exactly 1. A functional property is equivalent to a property with a

cardinality restriction that says it has a maximum of 1 value. The term functional is from mathematics

where a function is defined as a relation where each member of the domain has at most one value. For

example, the greaterThan relation is not functional since for any number X many (in fact an infinite

number) can be greaterThan X but the plusOne relation is functional since for any number X

plusOne always results in one unique value.

4.8.2 Inverse Functional Properties

If a property is inverse functional then it means that the inverse property is functional. For a given

individual, there can be at most one individual related to that individual via the property. Following our

example from section 4.8.1 the inverse of hasBirthMother would be isBirthMotherOf. The

isBirthMotherOf property would not be functional since a woman can be the birth mother of several

children. However, it would be inverse functional since each person has exactly one mother.

4.8.3 Transitive Properties

If a property P is transitive, and P relates individual a to

individual b, and also individual b to individual c, then we can

infer that individual a is related to individual c via property P.

For example, Figure 4.13 shows an example of the transitive

property hasAncestor. If the individual Diya has an ancestor

that is Fatima, and Fatima has an ancestor that is Arjun, then

we can infer that Diya has an ancestor that is Arjun – this is

indicated by the curved line in Figure 4.13.

An example of the transitive property in mathematics is the >

relation. If x > y and y > z then x > z.

Note that if a property is transitive it cannot be functional. Also,

if a property is transitive then its inverse property must also be

transitive. E.g., the inverse of > is < and < is also transitive. We

will see an example of this in chapter 6.

4.8.4 Symmetric and Asymmetric Properties

If a property P is symmetric, and the property relates individual a to individual b then individual b is also

related to individual a via property P. The hasSibling property or hasSpouse are examples of

Arjun

Diya

Fatima

hasAncestor

hasAncestor

hasAncestor

Figure 4.13 Transitive

Properties

26

symmetric properties. If Michelle hasSpouse Barack, then Barack hasSpouse Michelle. A

symmetric property is its own inverse.

An Asymmetric property is a property that can never have symmetric values. If a property P is

asymmetric then if a is related to b via that property b cannot be related to a via that property. An example

of an asymmetric property is hasBirthMother. If Diya hasBirthMother Fatima, then it can’t be the

case that Fatima hasBirthMother Diya.

4.8.5 Reflexive and Irreflexive Properties

A reflexive property is a property that always relates an individual to itself. If a property P is reflexive

then for all individuals a P will always relate a to a. Equality is the most common example of a reflexive

property. For any object a, a is always equal to a. An irreflexive property is… you guessed it… a property

that can never relate an individual to itself. The property hasBirthMother is an example of an

irreflexive property since no person can be their own mother. Note: you should use reflexive properties

with care. The domain of a reflexive property is always owl:Thing. The reasons are complex, see the

W3C Owl 2 Specification in the bibliography for more details. The important thing is that if you make a

property reflexive that means its domain is owl:Thing. For example, if you have a reflexive property

and declare its domain to be some class such as Person the reasoner will infer that Person is equivalent

to owl:Thing which can cause problems.

4.8.6 Reasoners Automatically Enforce Property Characteristics

The reasoners that work with Protégé automatically enforce all the characteristics that are described

above. For example, if the user enters the fact that Diya hasBirthMother Fatima and

isBirthMotherOf is the inverse of hasBirthMother, the reasoner will infer that Fatima

isBirthMotherOf Diya. These types of characteristics can significantly reduce the amount of effort

needed to populate an ontology with data about individuals.

4.9 OWL Property Domains and Ranges

Properties may have a domain and range defined. These terms have the same meaning in OWL as they do

in mathematics and set theory. The domain of a property is the set of all objects that can have that

property asserted about it. The range is the set of all objects that can be the value of the property. Both the

domain and range are optional. In general, it is a good idea to define them because doing so can catch

modeling mistakes while defining the model rather than at run time when trying to use it. The domain for

an object property must always be a class. For data properties the range is a simple datatype such as

xsd:decimal. The most common predefined datatypes already exist in Protégé. It is also possible to

define new data types although most users will seldom need to do that. For most cases if you are

considering defining a new datatype you should probably consider making the property an object property

instead and defining a class as the range. For people familiar with Entity-Relation modeling an object

property is similar to a relation and a data property is similar to an attribute. For those familiar with set

theory a property is identical to a binary relation in set theory.

As an example, in our pizza ontology, the property hasTopping would link individuals belonging to the

class Pizza to individuals belonging to the class PizzaTopping. The domain of hasTopping is Pizza

and the range is PizzaTopping. Inverse properties have their domains and range swapped. In this

example, the inverse of hasTopping will be called isToppingOf. Thus, the domain for isToppingOf

is the range of hasTopping (PizzaTopping) and the range for isToppingOf is the domain of

hasTopping (Pizza).

27

Exercise 11: Define the domain and range of the hasTopping property

1. Navigate to the Object properties tab. Select the hasTopping property.

2. Click on the Add icon (+) next to Domains (intersection) in the Description view for hasTopping.

You will be presented with a window that shows several tabs. There are multiple ways to define domain

and range. For now we will use the simplest method (and the one most often used). Select the

ClassHierarchy tab. Then select Pizza from the class hierarchy. Your UI should look like figure 4.14.

Click on OK. You should now see Pizza underneath the Domains in the Description view.

3. Repeat step 2 but this time start by using the (+) icon next to the Ranges (intersection) in the

Description for hasTopping. This time select the class PizzaTopping as the range.

4. Synchronize the reasoner. Now select isToppingOf. You should see that the Domain and Range for

isToppingOf have been filled in by the reasoner (see figure 4.15). Since the two properties are inverses

the reasoner knows that the domain for one is the range for the other and vice versa. This is another

example of why frequently running the reasoner can save time and help maintain a valid model. Note that

these values are highlighted in yellow. Any information supplied by the reasoner rather than by the user is

highlighted in this way.

Figure 4.14 Defining the Domain for hasTopping

28

Figure 4.15 Domain and Range inferred by the reasoner

It is possible to specify more than one class as the domain or range of a property. One of the

most common mistakes of new users is to do this and expect that the resulting domain/range is

the union of the two classes. However, note that next to the Domain and Range in the

Description view it says (intersection). This is because the semantics of having 2 or more classes

as the domain or range is the intersection of those classes not the union. E.g., if one defined the

domain for a property to be Pizza and then added another domain IceCream that would

mean that for something to be in the domain of that property it would have to be an instance of

both Pizza and IceCream not (as people often expect) the union of those two sets which

would be either the class Pizza or the class IceCream. Also, note that the domain and range

are for inferencing, they are not data integrity constraints. This distinction will be explained in

more detail below in the section on SHACL.

29

Exercise 12: Define the domain and range for the hasBase property

1. Now we are going to repeat the same activities as in the previous exercise but for another property:

hasBase. Make sure you are still on the Object properties tab. Select the hasBase property.

2. Click on the Add icon (+) next to Domains (intersection) in the Description view for hasBase. Select

the ClassHierarchy tab. Then select Pizza from the class hierarchy..

3. Repeat step 2 but this time start by using the (+) icon next to the Ranges (intersection) in the

Description for hasBase. This time select the class PizzaBase as the range.

4. Synchronize the reasoner. Now select isBaseOf You should see that the Domain and Range for

isBaseOf have been filled in by the reasoner.

4.10 Describing and Defining Classes

Now that we have defined some properties, we can use these properties to define some more interesting

classes. There are 3 types of classes in OWL:

1. Primitive classes. These are classes that are defined by conditions that are necessary (but not

sufficient) to hold for any individuals that are instances of that class or its subclasses. The

condition may be as simple as: Class A is a subclass of class B. To start with we will define

primitive classes first and then defined classes. When the reasoner encounters an individual that is

an instance of a primitive class it infers that all the conditions defined for that class must hold for

that individual.

2. Defined classes. These are classes that are defined by both necessary and sufficient conditions.

When the reasoner encounters an individual that satisfies all the conditions for a defined class it

will make the inference that the individual is an instance of that class. The reasoner can also use

the conditions defined on classes to change the class hierarchy, e.g., to infer that Class A is a

subclass of Class B. We will see examples of this later in the tutorial.

3. Anonymous classes. These are classes that you won’t encounter much and that won’t be

discussed much in this tutorial, but it is good to know about them. They are created by the

reasoner when you use class expressions. For example, if you define the range of a property to be

PizzaTopping or PizzaBase then the reasoner will create an anonymous class representing

the intersection of those two classes.

4.10.1 Property restrictions

In OWL properties define binary relations with the same semantics and characteristics as binary relations

in First Order Logic. There are two types of OWL properties for describing a domain: Object properties

and Data properties. Object properties have classes as their domain and range. Data properties have

classes as their domain and simple datatypes such as xsd:string or xsd:dateTime as their range. In

figure 3.3 the individual Michael is related to the individual USA by the property livesIn. Consider all

the individuals who are an instance of Person and also have the same relation, that each livesIn the

USA. This group is a set or OWL class such as USAResidents. In OWL a class can be defined by

describing the various properties and values that hold for all individuals in the class. Such definitions are

called restrictions in OWL.

30

The following are some examples of classes of individuals that we might want to define via property

restrictions:

• The class of individuals with at least one hasChild relation.

• The class of individuals with 2 or more hasChild relations.

• The class of individuals that have at least one hasTopping relationship to individuals that are

members of MozzarellaTopping – i.e. the class of things that have at least a mozzarella

topping.

• The class of individuals that are Pizzas and only have hasTopping relations to instances of the

class VegetableTopping (i.e., VegetarianPizza).

In OWL we can describe all of the above classes using restrictions. OWL restrictions fall into three main

categories:

1. Quantifier restrictions. These describe that a property must have some or all values that are of a

particular class.

2. Cardinality restrictions. These describe the number of individuals that must be related to a class

by a specific property.

3. hasValue restrictions. These describe specific values that a property must have.

We will initially use quantifier restrictions. Quantifier restrictions can be further categorized as existential

restrictions and universal restrictions6. Both types of restrictions will be illustrated with examples in this

tutorial.

• Existential restrictions describe classes of individuals that participate in at least one relation along

a specified property. For example, the class of individuals who have at least one (or some)

hasTopping relation to instances of VegetableTopping. In OWL the keyword some is used

to denote existential restrictions.

• Universal restrictions describe classes of individuals that for a given property only have relations

along a property to individuals that are members of a specific class. For example, the class of

individuals that only have hasTopping relations to instances of the class VegetableTopping.

In OWL they keyword only is used for universal restrictions.

Let’s take a closer look at an example of an existential restriction. The restriction hasTopping some

MozzarellaTopping is an existential restriction (as indicated by the some keyword), which restricts the

hasTopping property, and has a filler MozzarellaTopping. This restriction describes the class of

individuals that have at least one hasTopping relationship to an individual that is a member of the class

MozzarellaTopping.

6 These have the same meaning as existential and universal quantification in First Order Logic.

A restriction always describes a class. Sometimes (as we will soon see) it can be a defined class.

Other times it may be an anonymous class. In all cases the class contains all of the individuals

that satisfy the restriction, i.e., all of the individuals that have the relationships required to be a

member of the class. In section 9.2 one of our SPARQL queries will return several anonymous

classes.

31

The restrictions for a class are displayed and edited using the Class Description View shown in Figure

4.17. The Class Description View holds most of the information used to describe a class. The Class

Description View is a powerful way of describing and defining classes. It is one of the most important

differences between describing classes in OWL and in other models such as most object-oriented

programming languages. In other models there is no formal definition that describes why one class is a

subclass of another, in OWL there is. Indeed, the OWL classifier can actually redefine the class hierarchy

based on the logical restrictions defined by the user. We will see an example of this later in the tutorial.

4.10.2 Existential Restrictions

An existential restriction describes a class of individuals that have at least one (some) relationship along a

specified property to an individual that is a member of a specified class or datatype. For example,

hasBase some PizzaBase describes all of the individuals that have at least one relationship along the

hasBase property to an individual that is a member of the class PizzaBase — in more natural English,

all of the individuals that have at least one pizza base.

Exercise 13: Add a restriction to Pizza that specifies a Pizza must have a PizzaBase

1. Select Pizza from the class hierarchy on the Classes tab.

2. Click on the Add icon (+) next to the SubClass Of field in the Description view for Pizza.

3. This will bring up a new window with several tab options to define a new restriction. Select the Object

restriction creator. This tab has the Restricted property on the left and the Restriction filler on the right.

4. Expand the property hierarchy on the left and select hasBase as the property to restrict. Then in the

Restriction filler on the right select the class PizzaBase. Finally, the Restriction type at the bottom should

be set to Some (existential). This should be the default so you shouldn’t have to change anything but

double check that this is the case. Your window should look like figure 4.16 now.

5. When your UI looks like figure 4.16 click on the OK button. That should close the window. Run the

reasoner to make sure things are consistent. Your main window should now look like figure 4.17.

Restrictions are also called axioms in OWL. This has the same meaning as in logic. An axiom is a

logical formula defined by the user rather than deduced by the reasoner. As described above,

in Protégé all axioms are shown in normal font whereas all inferences inferred by the reasoner

are highlighted in yellow.

32

Figure 4.16 The Object Restriction Creator Tab

Figure 4.17 The Pizza Class with hasBase Restriction

33

We have described the class Pizza to be to be a subclass of Thing and a subclass of the things that have

a base which is some kind of PizzaBase. Notice that these are necessary conditions — if something is a

Pizza it is necessary for it to be a member of the class Thing (in OWL, everything is a member of the

class Thing) and necessary for it to have a kind of PizzaBase. More formally, for something to be a

Pizza it is necessary for it to be in a relationship with an individual that is a member of the class

PizzaBase via the property hasBase.

4.10.3 Creating Subclasses of Pizza

It’s now time to add some different kinds of pizzas to our ontology. We will start off by adding a

MargheritaPizza, which is a pizza that has toppings of mozzarella and tomato. In order to keep our

ontology tidy, we will group our different pizzas under the class NamedPizza.

Exercise 14: Create Subclasses of Pizza: NamedPizza and MargheritaPizza

1. Select Pizza from the class hierarchy on the Classes tab.

2. Click on the Add subclass icon at the top left of the Classes tab (look back at figure 4.4 if you aren’t

certain). You can also move your mouse over the icons and you will see a little pop-up hint for each icon.

3. Protégé will prompt you for the name of the new subclass. Call it NamedPizza.

4. Repeat steps 1-3 this time starting with NamedPizza to create a subclass of NamedPizza. Call it

MargheritaPizza.

5. Add a comment to the class MargheritaPizza using the Annotations view. This is above the

Description view. Add the comment: A pizza that only has Mozzarella and Tomato toppings. Remember

that annotation properties are meta-data that can be asserted about any entity whereas object and data

properties can only be asserted about individuals. There are a few predefined annotation properties that

are included in all Protégé ontologies such as the comment property.

Having created the class MargheritaPizza we now need to specify the toppings that it has. To do this we

will add two restrictions to say that a MargheritaPizza has the toppings MozzarellaTopping and

TomatoTopping.

Exercise 15: Create Restrictions that define a MargheritaPizza

1. Select MargheritaPizza from the class hierarchy on the Classes tab.

2. Click on the Add icon (+) next to the SubClass Of field in the Description view for Pizza.

3. This again brings up the restriction dialogue. This time rather than use the Object restriction creator we

will use the Class expression editor tab. Select that tab.

4. Type hasTopping some Mo into the field. Rather than type the rest of the name of the topping now hit

<control><space> (hold down the control key and hit the space bar). Protégé should auto-complete the

name for you and the field should now contain: hasTopping some MozzarellaTopping. This is a useful

technique for any part of the Protégé UI. Whenever you enter the name of some entity you can do

34

<control><space>. If there is only one possible completion for the string then Protégé will fill in the

appropriate name. If there are multiple possible completions Protégé will create a menu with all the

possible completions and allow you to select the one you want.

5. Click on OK to enter the new restriction.

6. Repeat steps 1-5 only this time add the restriction hasTopping some TomatoTopping. Remember to use

<control><space> to save time typing. Synchronize the reasoner to make sure things are consistent. Your

UI should now look similar to figure 4.18.

Figure 4.18 Definition for the class MargheritaPizza

35

Note in figure 4.18 the two classes listed under Disjoint With and highlighted in yellow. This is an

example of an inference from the reasoner. When we defined Pizza, PizzaBase, and PizzaTopping

we made those 3 classes disjoint. I.e., no individual can be a member of more than one of those classes.

Since MargheritaPizza is a subclass of Pizza it is also disjoint with PizzaBase and

PizzaTopping, so the reasoner has added this information to the definition of MargheritaPizza and

as with all inferences from the reasoner highlighted the new information in yellow.

We will now create the class to represent an AmericanaPizza, which has toppings of pepperoni,

mozzarella and tomato. Because the class AmericanaPizza is similar to the class MargheritaPizza

(i.e., an AmericanaPizza is almost the same as a MargheritaPizza but with an extra topping of

pepperoni) we will make a clone of the MargheritaPizza class and then add an extra restriction to say

that it has a topping of pepperoni.

Exercise 16: Create AmericanaPizza by Cloning MargheritaPizza and Adding Additional

Restrictions

1. Select MargheritaPizza from the class hierarchy on the Classes tab.

2. Select Edit>Duplicate selected class. This will bring up a dialogue for you to duplicate the class. The

default is the name of the existing class so there will be a red error message when you start because you

need to enter a new name. Change the name from MargheritaPizza to AmericanaPizza. Leave all the other

options as they are and then select OK.

3. Make sure that AmericanaPizza is still selected. Click on the Add icon (+) next to the SubClass Of field

in the Description view for AmericanaPizza.

4. Use either the Object restriction creator tab or the Class expression editor tab to add the additional

restriction: hasTopping some PepperoniTopping.

5. Click on OK to enter the new restriction.

6. Edit the comment annotation on AmericanaPizza. It should currently be: A pizza that only has

Mozzarella and Tomato toppings since it was copied over from MargheritaPizza. Note that at the top

right of the comment there are three little icons, an @ sign, an X and an O. Click on the O. This icon is

the one you use to edit any existing data in Protégé. This should bring up a window where you can edit

the comment. Change it to something appropriate such as: A pizza that only has Mozzarella, Tomato, and

Pepperoni toppings. Then click on OK to enter the edit to the comment.

Exercise 17: Create AmericanaHotPizza and SohoPizza

1. An AmericanaHotPizza is almost the same as an AmericanaPizza but has Jalapeno peppers on it.

Create this by cloning the class AmericanaPizza and adding an existential restriction along the

hasTopping property with a filler of JalapenoPepperTopping.

36

2. A SohoPizza is almost the same as a MargheritaPizza but has additional toppings of olives and

parmesan cheese — create this by cloning MargheritaPizza and adding two existential restrictions along

the property hasTopping, one with a filler of OliveTopping, and one with a filler of ParmesanTopping.

Exercise 18: Make Subclasses of NamedPizza Disjoint

1. We want to make these subclasses of NamedPizza disjoint from each other. I.e., any individual can

belong to at most one of these classes. To do that first select MargheritaPizza (or any other subclass of

NamedPizza).

2. Click on the (+) sign next to Disjoint With near the bottom of the Description view. This will bring up

a Class hierarchy view. Use this to navigate to the subclasses of NamedPizza and use <control><left

click> to select all of the other sibling classes to the one you selected. Then select OK. You should now

see the appropriate disjoint axioms showing up on each subclass of NamedPizza. Synchronize the

reasoner. Your UI should look similar to figure 4.19 now.

Figure 4.19 Subclasses of NamedPizza are Disjoint

37

4.10.4 Detecting a Class that can’t Have Members

Next, we are going to use the reasoner to detect a class with a definition that means it can never have any

members. In the current version of Protégé when the reasoner detects an inconsistency or problem on

some operating systems the UI can occasionally lock up and be hard to use. So to make sure you don’t

lose any of your work save your ontology using File>Save.

Sometimes it can be useful to create a class that we think should be impossible to instantiate to make sure

the ontology is modeled as we think it is. Such a class is called a Probe Class.

Exercise 19: Add a Probe Class called ProbeInconsistentTopping

1. Select the class CheeseTopping from the class hierarchy.

2. Create a subclass of CheeseTopping called ProbeInconsistentTopping.

3. Click on the Add icon (+) next to the SubClass Of field in the Description view for

ProbeInconsistentTopping.

4. Select the Class hierarchy tab from the dialogue that pops up. This will bring up a small view that

looks like the class hierarchy tab you have been using to add new classes. Use this to navigate to and

select the class VegetableTopping. Click on OK.

5. Make sure to save your current ontology file. Now run the reasoner. You should see that

ProbeInconsistentTopping is now highlighted in red indicating it is inconsistent.

6. Click on ProbeInconsistentTopping to see why it is highlighted in red. Notice that at the top of the

Description view you should now see owl:Nothing under the Equivalent To field. This means that the

probe class is equivalent to owl:Nothing. The owl:Nothing class is the opposite of owl:Thing.

Whereas all individuals are instances of owl:Thing, no individual can ever be an instance of

owl:Nothing. The owl:Nothing class is equivalent to the empty set in set theory.

7. There should be a ? icon just to the right of owl:Nothing. As with any inference of the reasoner it is

possible to click on the new information and generate an explanation for it. Do that now, click on the ?

icon. This should generate a new window that looks like figure 4.20. The explanation is that

ProbeInconsistentTopping is a subclass of CheeseTopping and VegetableTopping but those

two classes are disjoint.

8. Click OK to dismiss the window. Delete the class ProbeInconsistentTopping by selecting it and then

clicking on the delete class icon at the top of the classes view (see figure 4.4).

9. Synchronize the reasoner.

38

Figure 4.20 Explanation for why ProbeInconsistentTopping is equivalent to owl:Nothing

4.11 Primitive and Defined Classes (Necessary and Sufficient Axioms)

All of the classes that we have created so far have only used necessary axioms to describe them.

Necessary axioms can be read as, If something is a member of this class then it is necessary to fulfil these

conditions. With necessary axioms alone, we cannot say that: If something fulfils these conditions then it

must be a member of this class.

Let’s illustrate this with an example. We will create a subclass of Pizza called CheesyPizza, which

will be a Pizza that has at least one kind of CheeseTopping.

Exercise 20: Create the CheesyPizza class

1. Select Pizza in the class hierarchy on the Classes tab.

2. Select the Add Subclass icon (see figure 4.4). Name the new subclass CheesyPizza.

3. Make sure CheesyPizza is selected. Click on the Add icon (+) next to the SubClass Of field in the

Description view.

4. Select the Class expression editor tab. Type in the new axiom: hasTopping some CheeseTopping.

Remember you can use <control><space> to auto-complete each word in the axiom, e.g., type hasT and

then <control><space> to auto-complete the rest. If you haven’t typed enough for Protégé to

unambiguously choose one entity or Description Logic keyword you will be prompted with a menu of

possible completions. Click OK to enter the new restriction axiom.

39

Our current description of CheesyPizza says that if something is a CheesyPizza it is necessarily a

Pizza and it is necessary for it to have at least one topping that is a kind of CheeseTopping. Now

consider some random individual. Suppose that we know that this individual is a member of the class

Pizza. We also know that this individual has at least one kind of CheeseTopping. However, given our

current description of CheesyPizza this knowledge is not sufficient to determine that the individual is a

member of the class CheesyPizza. To make this possible we need to change the conditions for

CheesyPizza from necessary conditions to necessary AND sufficient conditions. This means that not

only are the conditions necessary for membership of the class CheesyPizza, they are also sufficient to

determine that any random individual that satisfies them must be a member of the class CheesyPizza.

A class (such as all the classes we have defined so far) that only has necessary conditions is called a

primitive class. A class that has necessary and sufficient conditions is known as a defined class. In order

to convert necessary conditions to necessary and sufficient conditions, the conditions must be moved

from under the SubClass Of header in the class description view to be under the Equivalent To header.

This can be done with the menu option: Edit>Convert to defined class.

Exercise 21: Convert CheesyPizza from a Primitive Class to a Defined Class

1. Make sure CheesyPizza is selected.

2. Select the menu option: Edit>Convert to defined class.

3. Synchronize the reasoner.

Your screen should now look similar to figure 4.21. Note that when a class is a defined class it is shown

in the UI with three horizontal stripes in the circle next to its name.

So far we have seen the reasoner do simple things such as propagate disjoint axioms from super classes

down to subclasses. However, the reasoner is capable of doing much more. Now that we have a defined

class we can see an example of this. Notice that there are two tabs in the Class hierarchy view. The one

shown in figure 4.21 is the asserted hierarchy. This is the hierarchy as defined by user declared axioms.

The other tab is the Class hierarchy (inferred) tab. This is the hierarchy as inferred by the reasoner. Up

until we created a defined class the two tabs would be identical because we had only primitive classes in

the ontology. Now that we have a defined class the inferred hierarchy will look different. Select the Class

hierarchy (inferred) tab. Make sure that the reasoner is synchronized (it should say Reasoner active as in

figure 4.21). Also, make sure to expand the CheesyPizza class in this tab. You should see a screen

similar to figure 4.22. As you should see in the inferred tab the reasoner has inferred that all the Pizza

classes with a cheese topping are subclasses of CheesyPizza.

Note that if you just type a few characters, the number of possible completions may be large

resulting in an unwieldy menu. Also, Protégé doesn’t do things like type checking on possible

completions. For example, if you type “Chee” and do <control><space> you will be prompted

with CheeseTopping and CheesyPizza as possible completions even though a Pizza is not

in the range of hasTopping. This is where the reasoner can also help. If you enter a class that

is not in the range of hasTopping the reasoner will signal an inconsistency.

40

Figure 4.21 CheesyPizza as a Defined Class

Figure 4.22 Classes Inferred by the Reasoner to be subclasses of CheesyPizza

41

4.12 Universal Restrictions

All of the restrictions we have created so far have been existential restrictions (defined using the some

DL keyword). Existential restrictions specify the existence of at least one relationship along a given

property to an individual that is a member of a specific class (specified by the filler). However, existential

restrictions do not mandate that the only relationships for the given property that can exist must be to

individuals that are members of the specified filler class.

For example, we could use an existential restriction hasTopping some MozzarellaTopping to

describe the individuals that have at least one relationship along the property hasTopping to an

individual that is a member of the class MozzarellaTopping. This restriction does not imply that all of

the hasTopping relationships must be to a member of the class MozzarellaTopping. To restrict the

relationships for a given property to individuals that are members of a specific class we must use a

universal restriction. Universal restrictions correspond to the symbol ∀ in First Order Logic. They

constrain the relationships along a given property to individuals that are members of a specific class. For

example, the universal restriction ∀ hasTopping VegetableTopping describes the individuals all of

whose hasTopping relationships are to members of the class VegetableTopping — the individuals do

not have a hasTopping relationship to individuals that aren’t members of the class

VegetableTopping.

Suppose we want to create a class called VegetarianPizza. Individuals that are members of this class

can only have toppings that are a CheeseTopping or VegetableTopping. To do this we can use a

universal restriction:

Exercise 22: Create a Defined Class called VegetarianPizza

1. Select the Pizza in the Classes tab. Create a subclass of Pizza and name it VegetarianPizza.

2. Make sure VegetarianPizza is selected. Click on the Add icon (+) next to the SubClass Of field in the

Description view.

3. Select the Class expression editor tab from the pop-up window. Type in the Description Logic axiom:

hasTopping only (VegetableTopping or CheeseTopping). Click on OK.

4. Make sure VegetarianPizza is still selected. Run the Edit>Convert to defined class command.

5. VegetarianPizza should now have three horizontal lines through it just as CheesyPizza does.

Also, the Equivalent To field in the Description view should have: Pizza and (hasTopping only

(CheeseTopping or VegetableTopping)). Note that another way to create defined classes is to enter the

Description Logic axiom directly into the Equivalent To field.

6. Synchronize the reasoner.

This means that if something is a member of the class VegetarianPizza it is necessary for it

to be a kind of Pizza and it is necessary for it to only (∀ universal quantifier) have toppings that

are kinds of CheeseTopping or kinds of VegetableTopping. In other words, all

hasTopping relationships that individuals which are members of the class VegetarianPizza

participate in must be to individuals that are either members of the class CheeseTopping or

VegetableTopping. The class VegetarianPizza also contains individuals that are Pizzas

and do not participate in any hasTopping relationships.

42

4.13 Automated Classification and Open World Reasoning

Make sure that the reasoner is synchronized (the little text in the lower right corner should say Reasoner

active). Now switch from the Class hierarchy tab to the Class hierarchy (inferred) tab. You may notice

something that seems perplexing. The classes MargheritaPizza and SohoPizza both only have

vegetable and cheese toppings. So one might expect that the reasoner would classify them as subclasses

of VegetarianPizza as it recently (in section 4.11) classified them and others as subclasses of

CheesyPizza. The reason this didn’t happen is something called the Open World Assumption (OWA).

This is one of the concepts of OWL that can be most confusing for new and even experienced users

because it is different than the Close World Assumption (CWA) used in most other programming and

knowledge representation languages.

In most languages using the CWA we assume that everything that is currently known about the system is

already in the database. However, OWL was meant to be a language to bring semantics to the Internet so

the language designers chose the OWA. The open world assumption means that we cannot assume

something doesn’t exist just because it isn’t currently in the ontology. The Internet is an open system. The

information could be out there in some data source that hasn’t yet been integrated into our ontology.

Thus, we can’t conclude some information doesn’t exist unless it is explicitly stated that it does not exist.

In other words, because something hasn’t been stated to be true, it cannot be assumed to be false — it is

assumed that the knowledge just hasn’t been added to the knowledge base. In the case of our pizza

ontology, we have stated that MargheritaPizza has toppings that are kinds of MozzarellaTopping

and also kinds of TomatoTopping. Because of the open world assumption, until we explicitly say that a

MargheritaPizza only has these kinds of toppings, it is assumed by the reasoner that a

MargheritaPizza could have other toppings. To specify explicitly that a MargheritaPizza has

toppings that are kinds of MozzarellaTopping or kinds of TomatoTopping and only kinds of

MozzarellaTopping or TomatoTopping, we must add what is known as a closure axiom on the

hasTopping property.

In situations like the above example, a common mistake is to use an intersection instead of a

union. For example, CheeseTopping and VegetableTopping. Although CheeseTopping

and Vegetable might be a natural thing to say in English, this logically means something that

is simultaneously a kind of CheeseTopping and VegetableTopping. This is incorrect

because we have stated that CheeseTopping and VegetableTopping are disjoint classes

and hence no individual can be an instance of both. If we used such a definition the reasoner

would detect the inconsistency.

In the above example it might have been tempting to create two universal restrictions — one

for CheeseTopping (∀ hasTopping CheeseTopping) and one for

VegetableTopping (∀ hasTopping VegetableTopping). However, when multiple

restrictions are used (for any type of restriction) the total description is taken to be the

intersection of the individual restrictions. This would have therefore been equivalent to one

restriction with a filler that is the intersection of MozzarellaTopping and TomatoTopping

— as explained above this would have been logically incorrect.

43

A closure axiom on a property consists of a universal restriction that says that a property can only be

filled by specified fillers. The restriction has a filler that is the union of the fillers that occur in the

existential restrictions for the property. For example, the closure axiom on the hasTopping property for

MargheritaPizza is a universal restriction that acts along the hasTopping property, with a filler that

is the union of MozzarellaTopping and also TomatoTopping. i.e. hasTopping only

(MozzarellaTopping or TomatoTopping).

Exercise 23: Add a Closure Axiom on the hasTopping Property for MargheritaPizza

1. Make sure that MargheritaPizza is selected in the class hierarchy in the Classes tab.

2. Click on the Add icon (+) next to the SubClass Of field in the Description view.

3. Select the Class expression editor tab from the pop-up window. Type in the Description Logic axiom:

hasTopping only (MozzarellaTopping or TomatoTopping).

4. Click on OK.

5. Repeat steps 1-4 but this time click on SohoPizza and use the axiom: hasTopping only

(MozzarellaTopping or TomatoTopping or ParmesanTopping or OliveTopping).

6. Synchronize the reasoner.

The previous axioms said that for example that it was necessary for any Pizza that was a

MargheritaPizza to have a MozzarellaTopping and a TomatoTopping. The new axioms say that

a MargheritaPizza can only have these toppings and similarly for SohoPizza and its toppings. This

should supply the needed information for the reasoner to now make them both subclasses of

VegetarianPizza. Go to the Class hierarchy (inferred) tab. You should now see that

MargheritaPizza and SohoPizza are both classified as subclasses of VegetarianPizza. Your UI

should now look similar to figure 4.23. Note the various axioms highlighted in yellow. Those are all

additional inferences supplied by the reasoner. For experience you might want to click on some of the ?

icons next to these inferences to see the explanations generated by the reasoner. As you develop more

complex ontologies this is a powerful tool to debug and design your ontology.

44

Figure 4.23 The Reasoner Inferred that Margherita and Soho Pizzas are subclasses of VegetarianPizza

4.14 Defining an Enumerated Class

A powerful tool in the object-oriented programming (OOP) community is the concept of design patterns.

The idea of a design pattern is to capture a reusable model that is at a higher level of abstraction than a

specific code library. One of the first and most common design patterns was the Model-View-Controller

pattern first used in Smalltalk and now almost the default standard for good user interface design. Since

there are significant differences between OWL and standard OOP the many excellent books on OOP

design patterns don’t directly translate into OWL design patterns. Also, since the use of OWL is more

recent than OOP there does not yet exist the excellent documentation of OWL patterns that the OOP

community has. However, there are already many design patterns that have been documented for OWL

and that can provide users with ways to save time and to standardize their designs according to best

practices.

One of the most common OWL design patterns is an enumerated class. When a property has only a few

possible values it can be useful to create a class to represent those values and to explicitly define the class

by listing each possible value. We will show an example of such an enumerated class by creating a new

45

property called hasSpiciness with only a few possible values ranging from Mild to Hot. In this

section we will also create the first individuals in our ontology.

Exercise 24: Create an Enumerated Class to Represent the Spiciness of a Pizza

1. Create a new subclass of owl:Thing called Spiciness.

2. Make sure that Spiciness is selected. Click on the Add icon (+) next to the Instances field in the

Description view.

3. You will be prompted with a window that looks like figure 4.24. The diamond icon at the top is for

creating a new individual. The circle with an X through it is for deleting an individual. Use the diamond

icon to create 3 individuals: Hot, Medium, and Mild, so your UI looks like figure 4.24, then click on OK.

4. You may notice that only one of the new individuals was actually created as an instance of

Spiciness. That’s okay. The next step will supply the reasoner with enough information to make the

other two also be instances of Spiciness.

5. Make sure that Spiciness is still selected. Click on the Add icon (+) next to the Equivalent To field in

the Description view. This time we will create a defined class by directly entering the definition for the

class into this field. Select the Class expression editor tab and enter the DL axiom: {Hot, Medium, Mild}.

Select OK.

6. Now run the reasoner. You should see that Spiciness is now a defined class and all three individuals:

Hot, Medium, and Mild, are now instances of that class.

Figure 4.24 Creating Individuals for an Enumerated Class

4.15 Adding Spiciness as a Property

Next we need to add a property that will define the spiciness of a PizzaTopping.

46

Exercise 25: Create and Use the hasSpiciness Property

1. Go to the Object properties tab. Create a new property called hasSpiciness. Define its domain to be

PizzaTopping and its range to be Spiciness. Run the reasoner so that it knows about the new property.

2. Go back to the Classes tab and select the class JalapenoPepperTopping. Click on the Add icon (+)

next to the SubClass Of field. Enter the DL axiom: hasSpiciness value Hot. Remember you can use

<control><space> to auto-complete. Click on OK.

3. Note that this is a different kind of restriction than before. Before we were defining abstract restrictions

such as some. I.e., some value from a class but the specific individual was not specified, as long as it was

an individual from that class the restriction was satisfied. Now we are defining a restriction that relates to

a specific individual, hence we use the value keyword rather than the some or only keywords.

4. Now we will use this property to define a new class of Pizza. Start by creating a new subclass of

Pizza called SpicyPizza.

5. Make sure that SpicyPizza is selected. Click on the Add icon (+) next to the SubClass Of field. Enter

the DL axiom: hasTopping some (hasSpiciness value Hot). This says that a SpicyPizza must have a

topping that hasSpiciness value of Hot.

6. Convert SpicyPizza to a defined class by selecting it and using Edit>Convert to defined class. Run the

reasoner.

Now go to the Class hierarchy (inferred) tab in the Classes tab (see figure 4.25). You should see that

AmericanHotPizza is now classified as a subclass of SpicyPizza because it has a topping

(JalapenoPepperTopping) that has a spiciness value of Hot.

4.16 Cardinality Restrictions

In OWL we can describe the class of individuals that have at least, at most, or exactly a specified number

of relationships with other individuals or datatype values. The restrictions that describe these classes are

known as Cardinality Restrictions. For a given property P, a Minimum Cardinality Restriction specifies

the minimum number of P relationships that an individual must participate in. A Maximum Cardinality

Restriction specifies the maximum number of P relationships that an individual can participate in. A

Cardinality Restriction specifies the exact number of P relationships that an individual must participate in.

Relationships (for example between two individuals) are only counted as separate relationships if it can

be determined that the individuals that are the fillers for the relationships are different from each other.

Let’s add a cardinality restriction to our Pizza Ontology. We will create a new subclass of Pizza called

InterestingPizza which will be defined to have 3 or more toppings.

47

Figure 4.25 AmericanHotPizza classified as SpicyPizza

Exercise 26: Create an InterestingPizza that has at least three toppings

1. Create a subclass of Pizza called InterestingPizza.

2. Click on the Add icon (+) next to the SubClass Of field. Use the Class expression editor tab and enter

hasTopping min 3 PizzaTopping and click on OK.

3. Make sure InterestingPizza is still selected and use the Edit>Convert to defined class option to turn

InterestingPizza into a defined class.

4. Run the reasoner.

Go to the Class hierarchy (inferred) tab in the Classes tab and click on InterestingPizza. You should see

that there are three Pizza classes that are classified as interesting: AmericanaHotPizza, AmericanaPizza,

and SohoPizza.

48

Chapter 5 Datatype Properties

So far we have been describing object properties. These are properties that have a range that is some

class. As with most other object-oriented languages OWL also has the capability to define properties with

the range of a simple datatype such as a string or integer. Object purists will argue that everything should

be an object. However, to borrow a quote from The Amazing Spiderman: “with great power comes great

overhead”. I.e., the extra capabilities that one has with a class and an instance also means that instances

take up more space and can be slower to process than simple datatypes. For that reason, OWL comes with

a large library of pre-existing datatypes that are mostly imported from XML. That is why many of the

predefined datatypes in Protégé have a prefix of xsd for example xsd:string and xsd:integer. It is

also possible to create new basic datatypes. However, for the majority of use cases, if one needs a

datatype that doesn’t map to one of the predefined types the best solution is to usually just define a class.

A property with a range that is a simple datatype is known as a datatype property. This is analogous to the

distinction between an association and an attribute in the Unified Modeling Language (UML) OOP

modeling language. A UML association is similar to an OWL object property and a UML attribute is

similar to an OWL datatype property. It is also analogous to the distinction between relations and

attributes in entity-relation modeling. A relation in an E/R model is similar to an object property in OWL

and an attribute is similar to a datatype property. Because datatypes don’t have all the power of OWL

objects, many of the capabilities for object properties described in section 4.8 such as having an inverse or

being transitive aren’t available for datatype properties.

5.1 Defining a Data Property

As with other OWL entities, datatype properties can be defined either via the Data properties tab in the

Entities tab or in the Data properties tab available via the Window>Tabs>Data properties option.

We will use datatype properties to describe the calorie content of pizzas. We will then use some numeric

ranges to broadly classify particular pizzas as high or low calorie. In order to do this we need to complete

the following steps:

1. Create a datatype property hasCaloricContent, which will be used to state the calorie content

of particular pizzas.

2. Create several example Pizza individuals with specific calorie contents.

3. Create two classes broadly categorizing pizzas as low or high calorie.

Exercise 27: Create a Datatype Property called hasCaloricContent

1. Open a Data properties tab. Select owl:topDataProperty.

2. Click on the Add sub property icon in the upper left corner. This works just the same as the UI for

adding object properties.

3. Name the new data property hasCaloricContent and select OK.

4. Click on the (+) icon next to Domains in the Description view for hasCaloricContent. Use the Class

hierarchy tab to select the Pizza class as the domain.

49

5. Click on the (+) icon next to Ranges in the Description view for hasCaloricContent. Select the Built in

datatypes tab from the pop-up menu. Select xsd:integer7 from the rather long menu of possible built-in

datatypes. This is the default datatype to use for integer data properties.

6. Click the Functional check box next to the Description view. A Pizza can only have one caloric content

and hence is functional. Data properties are often functional.

5. Select OK and run the reasoner. Your UI should look similar to figure 5.1.

Figure 5.1 hasCaloricContent Data Property

7 For historic reasons there are many datatypes that are seldom used, e.g., xsd:int which is similar to xsd:Integer.
For numbers, the default datatypes are xsd:integer for integers and xsd:decimal for real numbers. Unless you have
a good reason to use a different numeric datatype it is best to stick with these default types. E.g., when you write a
SWRL rule if you use a number SWRL will infer that any integers are xsd:integer and any rationals are xsd:decimal.

50

Note that as with object properties defining a domain and/or range is optional. In general, it is a good

practice to do so as it can lead to finding errors in your ontology during the modeling phase rather than at

run time.

5.2 Customizing the Protégé User Interface

In order to demonstrate our new data property, we will need to create some instances of the Pizza class

and set the value of the data property hasCaloricContent. One of the advantages of Protégé is that it

is highly customizable to your specific requirements and work style. There are many views that are

available that aren’t included in the default Protégé environment because it would be too cluttered. In

addition, all of the views that you have already used can be resized, removed, or added to existing tabs.

You can also create completely new tabs of your own.

As an example, we are going to first bring up a new major tab called Individuals by class. This tab can be

useful to create individuals and to add or edit their object and data property values. We are going to

customize this tab to make it easier to use by adding a new view to it.

To begin use the menu option Window>Tabs>Individuals by class to bring up this new tab. Of course, if

it already exists in your UI simply select it.

We want to make add a new view as an additional sub-tab in the view that currently has the Annotations

and Usage, tabs near the upper right corner8. Once you are in the Individuals by class tab select

Window>Views>Individual views>Individuals by type (inferred). This will give you a blue outline of the

new view. As you move the outline around the existing window it will change depending how you move

it, indicating how it will fit into the existing tab after you click. When the blue outline looks like figure

5.2 click left and you will see the new view added as another sub-tab.

After you click your UI should now look similar to figure 5.3. If you clicked somewhere else you can just

go to the new view and delete it by clicking the X in the upper right corner of the view and then redo it

and position it correctly. At first it may seem a bit unintuitive but after you do it a few times it becomes

very easy to position new views.

With this new view you can see the instances of each class displayed beneath the class. Each class can be

expanded or contracted to view or hide its particular instances. Since we don’t have many instances in our

ontology yet the usefulness of this new view isn’t that obvious but as we add more instances and as you

deal with larger real ontologies in the future, this view can be very helpful to find specific instances of a

class. Note that the UI just shows the most direct class (or classes) that the Individual is an instance of.

For example, we currently just have three individuals, the three instances of Spiciness: Hot, Medium,

and Mild. These are also instances of owl:Thing (as are all instances) however the UI only displays

them as instances of Spiciness since it is implicit that they are also instances of all the superclasses of

Spiciness.

8 Your particular Protégé UI may look slightly different than some of the screen snapshots depending on if your
organization or another user has already customized the Protégé UI. If you ever want to return a major tab to its
default configuration select that tab and use Window>Reset selected tab to default configuration.

51

Figure 5.2 Adding a new view to the Individuals by class tab

52

Figure 5.3 A Customized Individuals by class tab

Exercise 28: Create Example Pizza Individuals

1. We will now add our first actual Pizza. Remain in the Individuals by class tab.

2. Use the Class hierarchy view in the upper left to navigate to MargheritaPizza and select it. There is a

view directly under the Class hierarchy tab called Direct instances. Click the little diamond in that view.

This will prompt you for the name of your new individual. Call it MargheritaPizza1.

3. Your UI should now look similar to figure 5.4.

53

Figure 5.4 Creating Our First Pizza

Exercise 29: Assign a Data Property Values

1. Remain in the Individuals by class tab. Click on MargheritaPizza1. You should see in the Description

view that it is an instance of MargheritaPizza. Now you will use the Property assertions view to set

the caloric content of MargheritaPizza1. This view can be used to set object and data properties.

2. Click on the (+) icon next to Data property assertions in the Property assertions view in the lower

right.

3. Use the pop-up window to select the data property hasCaloricContent. Then enter 263 as the value and

use the menu at the bottom to define the value’s datatype to be xsd:integer. Note: this is different than

what you did in exercise 27. In exercise 27 you defined the datatype for the property. Here you are

defining the datatype for a specific value. It would be nice if Protégé could just infer the datatypes for you

but because datatype definitions can be complex this is harder than it might seem so you need to make

sure to explicitly define the datatype for each value. As you get into more realistic ontologies you will

often use tools such as Cellfie (described in chapter 8) to load your individual data automatically and

those tools can automatically add datatype information for each individual as part of the loading process.

54

4. Your UI should now look similar to figure 5.5. Select OK to enter the new value. Run the reasoner.

Figure 5.5 hasCaloricContent for MargheritaPizza1

Exercise 30: Create More Instances and Data Property Values

1. Remain in the Individuals by class tab. Click on other Pizzas and create instances of them (apx. 5-10)

and then fill in their caloric content with values ranging from 200 to 800. Try to have about half of your

pizzas higher than 400 calories and half less than 400. The UI retains the datatype from the previous use

so once you define the first caloric content you shouldn’t need to set the datatype again but it is always a

good idea to make sure it is correct, in this case: xsd:integer.

2. It is a good idea to adhere to an intuitive naming standard for your instances such as <Class

Name><Number> as we did for MargheritaPizza1. Depending on the classes you instantiate your

pizzas should have names like MargheritaPizza2, SohoPizza1, etc.

One of the most common sources of errors in ontologies is to have the wrong datatype for data

property values. The sooner you catch these errors, the easier they are to debug so it is a good

idea to run the reasoner frequently after you enter any values. Note that in some versions of

Protégé 5.5. there is a minor bug where the UI may lock up due to an inconsistent data value

(e.g., a string value in a property typed for integer). If this happens the best thing to do is save

your work if possible, quit Protégé, and then restart it. When you restart it fix the datatype

errors before you run the reasoner and then run the reasoner to make sure you actually have

fixed the error.

55

3. Make sure to create an instance of AmericanaPizza called AmericanaPizza1 that

hasCaloricContent 723.

4. Make sure to run the reasoner after creating all your instances.

Exercise 31: Create a Datatype Restriction that Every Pizza hasCaloricContent

1. Navigate to the Classes major tab.

2. Select the Pizza class.

3 Click on the (+) icon next to the SubClass Of field in the Description view. This time let’s use the Data

restriction tab. Navigate to and select hasCaloricContent in the Restricted property view. In the

Restriction filler view scroll down to xsd:integer and select it. The Restriction type should be set to the

default which is Some. If it isn’t use the menu to change it. Your UI should look like figure 5.6. Click

OK.

4. Note that you also could have selected Exactly 1 because a Pizza can only have one caloric content but

since you already defined the property to be functional this isn’t necessary and either Some or Exactly 1

have the same effect. Just as Protégé usually provides several ways to enter the same information in the

user interface OWL often provides different ways to provide the same information in your model. The

nice thing is the reasoner lets you not worry so much about which way you do it, as long as your

definitions are consistent.

We have now stated that every Pizza hasCaloricContent and that content must be an integer. In

addition to using the predefined set of datatypes we can further specialize the use of a datatype by

specifying restrictions on the possible values. For example, it is easy to specify a range of values for a

number.

56

Figure 5.6 Defining the hasCaloricContent data property restriction

Using the datatype property, we have created, we will now create defined classes that specify a range of

interesting values. We will define a HighCaloriePizza to be any pizza that has a calorific value equal

to or higher than 400.

Exercise 32: Create a HighCaloriePizza Defined Class

1. Navigate to the Classes tab.

2. Select the Pizza class. Create a subclass of Pizza called HighCaloriePizza.

3 Make sure HighCaloriePizza is selected. Click on the (+) icon next to the SubClass Of field in the

Description view. In the Class expression editor type hasCaloricContent some xsd:integer[>= 400] and

click OK.

4. Make sure HighCaloriePizza is still selected and use Edit>Convert to defined class to make it a defined

class.

57

5. Repeat steps 1-4 but this time create a subclass of Pizza called LowCaloriePizza and make its

definition be: hasCaloricContent some xsd:integer[< 400].

6. Run the reasoner. You should now see that each instance of Pizza that hasCaloricContent greater

than or equal to 400 is classified as a HighCaloriePizza and similarly those with less than 400 as

LowCaloriePizza. See the Description view in figure 5.7.

Figure 5.7 High Calorie Pizzas

58

Chapter 6 Adding Order to an Enumerated Class

In this chapter we will expand on the enumerated class that we created to model spiciness in chapter 4.14.

This chapter will highlight some of the power of object properties in OWL. We are going to create an

ordering for the instances of Spiciness. I.e., Hot isSpicierThan Medium which isSpicierThan

Mild. To start go to the Object properties tab. Create a new property that is a sub-property of

owl:topObjectProperty. Call this property isSpicierThan. Make its domain and range the Spiciness class.

Make the property transitive. Transitive means that if X isSpicierThan Y and Y isSpicierThan Z

then X isSpicierThan Z. This is of course similar to the greater than and less than relations in math.

Create another property called isMilderThan. Make one property the inverse of the other. It doesn’t matter

which one, you only have to specify that one property is the inverse of another, and the reasoner will

realize that both are inverses. Run the reasoner. You will see that the reasoner has inferred the domain and

range for isMilderThan than as well as the fact that it is transitive and the inverse of isSpicierThan.

Figure 6.1 Setting isSpicierThan property in the Individuals by class tab

59

Next go back to the Individuals by class tab. Go to the Individuals by type (inferred) view. You should

see the individuals that exist right now. So far we have the example Pizzas you created and the instances

of Spiciness: Hot, Medium, and Mild. Click on Hot. Notice that in the Property assertions view in the

lower right corner the title should now say: Property assertions: Hot. Click on the (+) icon next to Object

property assertions. You will be prompted with a form with two areas to input values. The name of the

property goes in the left hand side and the value in the right hand side (see figure 6.1). Type in

isSpicierThan as the name of the property. Remember you can use auto-complete so you should only

need to type isS and type <control><space> and Protégé will fill in the name of the property. Enter

Medium as the value. Your UI should look similar to figure 6.1. Select OK. Now click on Medium and

set its isSpicierThan value to be Mild. That is all the data entry you need to do. Now run the reasoner

again and click on the Hot, Medium, and Mild individuals. You should see that all the additional

isSpicierThan and isMilderThan values have been filled in for you because the reasoner knows that

the two properties are inverses and transitive. For example, Mild, which we didn’t edit at all, should have

two values for isMilderThan filled in by the reasoner.

We can use these properties in various ways to reason about the relative spiciness of things. We will show

some examples in chapter 8.

This concludes the basics of designing classes and properties with Protégé. There is also a web

version of Protégé available at https://webprotege.stanford.edu/# This takes you to a page

where you can create an account by providing an email and creating a password. Web Protégé

supports multiple users and has extra capabilities such as threaded discussions for collaborative

development of ontologies. However, it currently does not support any reasoners, so it is a

good idea to bring ontologies developed in WebProtégé into the desktop version to run the

reasoner and validate the ontology. See chapter 12 for more on Web Protégé.

https://webprotege.stanford.edu/

60

Chapter 7 Names: IRI’s, Labels, and Namespaces

In exercise 2 we set up some parameters regarding new entity names and rendering without much of an

explanation. The concept of a name in OWL is a little complex so we wanted to wait until you had a basic

grasp of an ontology before diving into these details.

To start with remember that every entity in your ontology has a unique Internationalized Resource

Identifier (IRI)9. An IRI is similar to a URL. In fact, a URL is a kind of IRI. I.e., all URLs are IRIs but

many IRIs are not URLs. A URL is typically meant to identify a specific page meant to be viewed in a

browser. An IRI is often at a smaller level of granularity and for any kind of resource, not only those

meant to be viewed in a browser. If you go to the Active ontology tab in Protégé you will see the

Ontology IRI for your ontology. This is the base IRI that all entities have in common. In addition, each

entity has a subsequent part that comes after the base IRI that uniquely identifies the IRI for the entity.

You can see this by clicking on any entity and starting (but don’t complete) the Refactor>Rename entity

command. Click on the Pizza class. Then select Refactor>Rename entity. You will get a pop-up window

with the current name: Pizza. However, this is only the final part of the IRI. To see the full IRI click on

the check box in the lower right corner that says: Show full IRI. Your full IRI will be different but it will

look something like: http://www.semanticweb.org/pizzatutorial/ontologies/2020/PizzaTutorial#Pizza.

Uncheck the Show full IRI box and then Cancel the rename command.

If you recall from exercise 2 there are two options when you create a new entity. One is to use a user

supplied name. That is the option that you should have selected at the beginning of the tutorial and that

should be active now. The other is to use an auto-generated name. This option creates a Universally

Unique Identifier (UUID) for the IRI of each entity. A UUID is an ID that is generated by an algorithm

and is guaranteed to be unique. There are also two ways to display an entity. One way is to use the last

part of the IRI that typically comes after a # sign as in the Pizza example above. The other is to use an

annotation property called a label. An annotation property is meant to provide meta-data about an entity.

Object and data property values can only be asserted on Individuals. However, since all entities have

meta-data annotation properties can be asserted on to any entity. There are some annotation properties

that are included by default with any Protégé ontology. You can see these by looking at the Annotation

properties tab. Note that just as with other properties you can also add your own annotation properties but

they should be used for meta-data not for regular data. You will see rdfs:label is one of the default

annotation properties. When you use UUIDs for your entity IRIs then by default Protégé will

automatically use the name you type in for a new entity in the rdfs:label annotation property.

Although you can also configure Protégé to use other properties if you wish, using the same dialog for

entity rendering that you used in exercise 2.

There are advantages and disadvantages to both options and there are options in between such as using

both user supplied names for IRIs and using rdfs:label for more intuitive names. The details can get

complicated and there also isn’t universal agreement within the community as to which is generally

better. For your first ontology and since you will be using SPARQL I chose to use user supplied entity

names because it is the simpler option and is especially better for SPARQL queries as you will see in the

9 IRIs are also sometimes called URIs. A URI is the same as an IRI except that URIs only support ASCII characters
whereas IRIs can support other character sets such as Kanji. The term people use these days is usually IRI.

http://www.semanticweb.org/pizzatutorial/ontologies/2020/PizzaTutorial#Pizza

61

next section. Which option you choose for your ontology will depend on the specific requirements you

have as well as the standards established by your organization or organizations that you work with.

Finally, another name related concept you should be aware of is the concept of a namespace. If you have

worked with most modern programming languages such as Python or Java, you are already familiar with

the concept of a namespace. The concept is identical in OWL. A namespace is used to avoid naming

conflicts between different ontologies. For example, you may have a class called Network in an ontology

about telecommunications. You might also have a class called Network in an ontology about graph

theory. The two concepts are related but are different. Just as with programming languages you use

namespace prefixes to determine what specific namespace a name refers to. E.g., in this example you

might have the prefix tc for the Telecom ontology and gt for the Graph Theory ontology. Thus, when

you referred to the Network class for the Telecom ontology you would use tc:Network and

gt:Network for the graph theory class.

Note that you already have some experience with other namespaces. The OWL namespace prefix is owl

and is used to refer to classes such as owl:Thing and owl:Nothing. The Resource Description

Framework Schema (RDFS) is a model that OWL is built on top of and thus some properties that

ontologies use such as rdfs:label leverage this namespace.

In the bottom view of the Active ontology tab there is a tab called Ontology Prefixes. This tab shows all

the current namespace mappings in your ontology. There are certain concepts from OWL, RDF, RDFS,

XML and XSD that are required for every ontology, so those namespaces are by default mapped in every

new Protégé ontology. There is also a mapping to the empty string for whatever the namespace is for your

ontology. This allows you to display and refer to entities in your ontology without entering a namespace

prefix. If you look at that tab now you should see a row where the first column is blank, and the second

column has the base IRI for your ontology. It should be the same IRI as the Ontology IRI at the top of the

Active ontology tab, except it also has a # sign at the end. E.g., the Pizza tutorial developed for this

tutorial has an IRI of: http://www.semanticweb.org/pizzatutorial/ontologies/2020/PizzaTutorial and the

row that has a blank first column in Ontology Prefixes has the IRI:

http://www.semanticweb.org/pizzatutorial/ontologies/2020/PizzaTutorial#.

http://www.semanticweb.org/pizzatutorial/ontologies/2020/PizzaTutorial
http://www.semanticweb.org/pizzatutorial/ontologies/2020/PizzaTutorial

62

Chapter 8 A Larger Ontology with some Individuals

The rest of the tutorial requires some data loaded into your ontology. So far, we have mostly been dealing

with defining classes and properties. This type of information is known in the semantic web community

as T-Box information. The T stands for Terminological. Individuals or instances are known as A-Box.

The A stands for Assertional as in specific facts that are asserted about the domain. Typically, there will

be a much larger amount of A-Box information than T-Box. The A-Box information is often uploaded

from spreadsheets, relational databases or other sources. One tool that is not covered in this tutorial that is

useful is called Cellfie. Cellfie is a tool that can take data from spreadsheets and upload it into an

ontology mapping the table-based data into objects and property values. For a tutorial on Cellfie see:

https://github.com/protegeproject/cellfie-plugin/wiki/Grocery-Tutorial

In addition to using Cellfie, you can use the Individuals by class tab introduced in chapter 5 to create new

instances and to create object and data property values for those instances as you did with the Hot and

Medium individuals in chapter 6. However, that can be tedious so to spare you that uninteresting work

I’ve developed a version of the Pizza ontology that has many individuals already created. That ontology

should be identical to the ontology you have developed so far except with many additional individuals.

You can find this populated Pizza ontology at: https://tinyurl.com/PizzaWDataV2 Go to this URL and

download the file to your local machine and then use File>Open. Before you do that, it is probably a good

idea to close the current file so that there is no possible confusion between the Pizza ontology you

developed and the new one with extra data.

https://github.com/protegeproject/cellfie-plugin/wiki/Grocery-Tutorial
https://tinyurl.com/PizzaWDataV2

63

8.1 Get Familiar with the Larger Ontology

Figure 8.1 Graph of Some of the New Ontology Classes and Individuals

Figure 8.1 uses the OntoGraf tab to visualize some of the new additions to the ontology. There is a new

class called Person with subclasses Employee and Customer. Employee has 5 individuals: Manager,

Chef, Waiter1, and Waiter2. Customer has 10 instances.

In addition, if you look at the Object properties tab you will see there are some new properties:

• The property purchasedByCustomer has domain Pizza and range Customer. It maps from

an individual Pizza to the Customer that purchased it. It has an inverse called

purchasedPizza.

• The property hasSpicinessPreference has domain Customer and range Spiciness. It

records the preference the Customer has for how spicy they usually like their Pizza.

64

The Data properties tab also shows some new properties:

• The hasDiscount data property has a domain of Customer and a range of xsd:decimal. This

records the discount (if any) that the Customer will get on their next purchase.

• The numberOfPizzasPurchased data property has a domain of Customer and a range of

xsd:integer. It records the number of Pizzas that each customer has purchased.

• The ssn property has a domain of Employee and a range of xsd:string. It maps from an

Employee to their social security number. In the United States this is a number that all employers

must have in order to process things such as insurance contributions and tax information.

• The hasPhone data property has a domain of Person and a range of xsd:string.

Most of these data properties have additional constraints in addition to their ranges. For example, a

discount can only be between 0 and 1 and a phone number and social security number must correspond to

a certain format.

Many of these constraints could be expressed via DL axioms that define the range. However, for reasons

that will be discussed below, it is often better to represent data integrity constraints using the SHACL

language rather than as DL axioms. The general rule of thumb is that DL axioms are for reasoning and

SHACL is for data integrity constraints. Of course, this begs the question what is the difference between

reasoning and integrity constraints and the distinction is by nature a fuzzy one. However, there are

guidelines that we will discuss in the section on SHACL which we hope will help shed some light on the

difference.

Finally, viewing the Individuals by class tab will help to understand the additional data in the ontology. If

you go to that tab, you will see many new individuals. In addition to Employees and Customers there

are instances of the Pizza class. You can see all these individuals in the Individuals by type (inferred)

view in the upper right corner.

Now with more instances you can see the value of the Individuals by type (inferred) view. You can

expand and contract various classes and see the instances for them10. Notice that the 4

HighCaloriePizzas are also instances of Pizza but they aren’t shown under Pizza because all

instances of HighCaloriePizza are always instances of the Pizza class. There is only one instance of

the Pizza class displayed because all the other instances of Pizza are also instances of subclasses of

Pizza so they are shown under those subclasses rather than under Pizza. If there are two or more

classes that an Individual is an instance of that aren’t subclasses of each other then they will all be shown.

For example, MargheritaPizza1 is an instance of both MargheritaPizza and LowCaloriePizza

and it shows up under each class because neither is a subclass of the other. It is possible for a Pizza to be

a LowCaloriePizza and not be a MargheritaPizza and vice-versa.

10 Note that if you have an instance of a class selected in the Individuals by type (inferred) view, you won’t be able
to collapse that class. E.g., in figure 8.2 we wouldn’t be able to collapse the Employee class because one of its
instances (Chef) is selected. To collapse it just select a different instance that isn’t an instance of the class you
want to collapse.

65

Figure 8.2 Viewing the New Instances in the Individuals by Class tab

66

Chapter 9 Queries: Description Logic and SPARQL
Now that we have some individuals in our ontology, we can do some interesting queries. There are

several tools for doing queries in Protégé.

9.1 Description Logic Queries

To start with the most straight forward one based on what you have already learned are Description Logic

(DL) queries. These are essentially the same kind of statements you have been using to define classes.

However, in addition to using such statements to define a class you can use it as a query.

Exercise 33: Try Some Description Logic Queries

1. To begin with navigate to the DL Query tab. If it doesn’t exist create it using: Window>Tabs>DL

Query.

2. At the top right of this tab you should see a view that says DL query: and below it Query (class

expression).

3 You can enter any DL statement you want in this box and then see all the entities that are subclasses,

superclasses, and instances of it. As an example, enter: Customer and purchasedPizza some (hasTopping

some (hasSpiciness value Hot)). I.e., all Customers who have purchased a Pizza that hasSpiciness

Hot. At first you may not see anything but don’t worry there is one more step.

4. Look at the check boxes on the right under Query for. Check Superclasses, Subclasses (although it

should already be checked by default) and Instances. Now your UI should look like figure 9.1. You may

notice that owl:Nothing shows up as a subclass. Don’t worry that is actually expected. Remember that

owl:Nothing is the empty set and the empty set is a subset of every set (including itself) so just as

owl:Thing is a superclass of every class owl:Nothing is a subclass of every class. If you don’t want to

see owl:Nothing you can uncheck the box toward the bottom right that says Display owl:Nothing.

5. Try some additional DL queries such as: hasTopping some (hasSpiciness value Hot) and

VegetarianPizza and (hasTopping some (hasSpiciness some (isMilderThan value Hot))). Note that with

this last query you are taking advantage of the transitive order you defined for the instances of the

Spiciness class in chapter 6.

6. You can also do queries for strings in the names of your entities. For example, first do a query simply

with Pizza in the query window. Then type in Hot in the Name contains field. This should give you all the

classes and individuals with Hot in their name.

67

Figure 9.1 The DL Query Tab

9.2 SPARQL Queries

SPARQL is a powerful language, and one could write a whole book about it. In fact, there are books

written about it. The best one I have seen is the O’Reilly book Learning SPARQL by Bob DuCharme.

This is an excellent book that not only goes into SPARQL but into topics such as RDF/RDFS and how

triples are used to represent all information in OWL. I will only touch on those issues here, there is much

more to say about them and DuCharme’s book is a great place to learn more. If some of the following is a

bit hard to understand don’t be discouraged. This is just an attempt to give a very high level introduction

to something that requires significant study to really understand.

Essentially SPARQL is to the Semantic Web and Knowledge Graphs as SQL is to relational databases.

Just as SQL can do more than just query, it can also assert new information into a database, so SPARQL

can as well. The current SPARQL plugins for Protégé are somewhat limited and don’t support the

statements such as INSERT for entering new data so we will just cover the basics of using SPARQL as a

query language but keep in mind there is a lot more to it than what we briefly cover here.

9.21 Some SPARQL Pizza Queries

To start with go to the SPARQL Query tab. If it isn’t already there you can as always add it using

Window>Tabs>SPARQL Query. This tab consists of two views, the top which holds the query and the

bottom which holds the results. There should be some text already there. It may look confusing, but we’ll

explain it. Just to start with hit the Execute button at the bottom of the tab. You should see a bunch of

classes and class expressions returned.

68

To understand what is going on you first need to understand that each SPARQL query consists of two

parts. The first part at the beginning consists of several namespace prefixes. These statements consist of

the prefix used for a particular namespace as well as the IRI associated with this namespace. Recall that

these concepts were described in chapter 7. You may be wondering where all these prefixes came from

since you didn’t add them to your ontology. The answer is that every OWL ontology comes with a set of

namespaces and prefixes that are required to define the ontology.

Also, to understand SPARQL you need to “peak under the hood” of OWL. So far, we have been

discussing concepts in purely logical and set theoretic terms, i.e., at the semantic level. However, like any

language or database there is a lower level that describes how the concepts are mapped to actual data. In a

relational database the fundamental construct to represent data is a table. In OWL the fundamental

construct is a triple. OWL is actually built on top of RDFS which is a language built on top of RDF. RDF

(Resource Description Framework) is a language to describe graphs (in the mathematical sense of the

term). I.e., to describe nodes and links.

The foundation for RDF graphs are triples consisting of a subject, predicate, and object. This results in

what is called an undirected or network graph because objects can be subjects and vice versa. Whenever

you define a property in OWL you are defining a predicate. An individual can be a subject or an object

(or both). E.g., in our ontology Customer1 purchasedPizza AmericanaHotPizza1. In this example

Customer1 is the subject, purchasedPizza is the predicate and AmericanaHotPizza1 is the object.

However, classes and properties themselves are also represented as triples. So for example, when you

create the class Pizza what Protégé does for you is to add the triple: Pizza rdf:type owl:Class to

the ontology. I.e., the Pizza entity is of type (is an instance of) owl:Class. Similarly when you add

NamedPizza as a subclass of Pizza, Protégé adds the triple: NamedPizza rdfs:subClassOf

Pizza.

Hopefully, now you can make some sense of this initial query. The query is looking for all the entities

that are the subjects of triples where the predicate is rdfs:subClassOf and the object is any other

entity. The ? before a name indicates that the name is a wildcard that can match anything that fits with the

rest of the pattern. This is part of the power of SPARQL, one can match a Subject, an Object, a Predicate

or even all three. Making all 3 parts of the pattern wildcards would return every triple in the graph (in this

case our entire Pizza ontology) being searched. You may notice that in some cases the object is simply the

name of a class while in others it is a class expression with an orange circle in front of it. This is because

when defining classes using DL axioms Protégé creates anonymous classes that correspond to various DL

axioms.

The SELECT part of a SPARQL query determines what data to display. The WHERE part of a query

determines what to match in the query. If you want to display everything matched in the WHERE clause

you can just use a * for the SELECT clause. The initial default query in this tab is set up with no

knowledge of the specific ontology. I.e., it will return all the classes that are subclasses of other classes

regardless of the ontology. To get information about Pizzas the first thing we need to do is to add

another prefix to the beginning of the query. In our case the Pizza ontology has been set up with a

mapping to the prefix pizza (you can see this in the ontology prefixes tab in the Active ontology tab

discussed in chapter 7). So, add the following to the SPARQL query after the last PREFIX statement:

PREFIX pizza: <http://www.semanticweb.org/pizzatutorial/ontologies/2020/PizzaTutorial#>

We are almost ready to query the actual ontology. For our first query let’s find all the Pizzas purchased by

a Customer. The SPARQL code for this is:

http://www.semanticweb.org/pizzatutorial/ontologies/2020/PizzaTutorial

69

SELECT * WHERE { ?customer pizza:purchasedPizza ?pizza }

Type that into the query window underneath the prefixes (of course remove the existing query). Hit

Execute. Your screen should look similar to figure 9.2.

Figure 9.2 A SPARQL Query

If you examine the output carefully you may notice an issue. Customer4 only seems to have purchased 2

Pizzas. However, if you examine the data in the Individuals by class tab you will see that she purchased 3.

The reason that one of them doesn’t show up is that when the data was entered, I typically entered it on

the Customer instances. However, for one of Customer4’s Pizzas I entered the data on the Pizza

instead. I.e., I asserted on HotVeggiePizza2 that it was purchasedByCustomer Customer4. Since

purchasedPizza and purchasedByCustomer are inverses, the reasoner filled in the additional

information for me. However, SPARQL doesn’t pay attention to information asserted by the reasoner

only information asserted by the user. Note: this depends on the implementation of SPARQL. For

example, there is another SPARQL implementation available as a Protégé plugin called Snap SPARQL

that is aware of reasoner inferences.

However, in the default SPARQL tab that we are using, SPARQL ignores information asserted by the

reasoner. This is an issue for other plugins for Protégé as well such as the Individuals matrix. Luckily,

there is a simple work around for this issue where information asserted by the reasoner can be saved and

reloaded so that it is the same as user defined data. This workaround is described in my blog in the article:

https://www.michaeldebellis.com/post/export-inferred-axioms

To further see this, replace the current query (make sure to keep all the prefixes) with:

https://www.michaeldebellis.com/post/export-inferred-axioms

70

SELECT * WHERE { ?pizza pizza:purchasedByCustomer ?customer}

This will show you the two pizzas where the purchase relation was asserted on the instance of Pizza rather

than on the instance of Customer.

Suppose you wanted to see all of the things that are objects of Customer? With a couple of new

constructs this is simple. First, in SPARQL a shortcut to identify the type of any entity is to use the

keyword a as the predicate. This is just shorthand for rdf:type. Second, when you have multiple

statements in a WHERE clause you need to end each one with a period.

Replace the current query with the following:

SELECT *

WHERE { ?customer a pizza:Customer.

 ?customer ?relation ?relatedToCustomer.}

This will provide a long list of everything in the graph that is an object of some instance of the Customer

class. I.e., any entity that is the object of a predicate with a Customer as the subject.

Suppose you wanted to count the number of Pizzas purchased by Customers so far. For this you use the

SPARQL function COUNT. Here is what it would look like:

SELECT (COUNT(?pizza) AS ?pcount)

WHERE {?customer pizza:purchasedPizza ?pizza}

Paste that into the SPARQL query view and hit Execute and you should see the returned value: 15.

However, remember this isn’t really all the Pizzas because a few of the purchases were recorded on the

Pizza rather than on the Customer. To get the full number we can take advantage of the fact that we

have recorded the number of pizzas that each customer has purchased and use the SPARQL SUM

function. That query would be:

SELECT (SUM(?pnumber) AS ?psum)

WHERE { ?customer pizza:numberOfPizzasPurchased ?pnumber}

This should give you the correct number of 17.

9.22 SPARQL and IRI Names

If you recall, at the beginning of the tutorial we changed the preference for creating new entities to user

supplied name rather than auto-generated name which is the default. Now that you have seen examples of

using SPARQL we can explain why. With auto-generated names rather than have names such as

Customer or purchasedByCustomer our entities would have names such as

OWLPropertyA4257yri73ff90rmbx and OWLClass23gkb0tk5kd30tm. Thus, the first query would

be something like:

SELECT * WHERE {?customer pizza:OWLPropertyA4257yri73ff90rmbx ?pizza}

and the second query would be:

SELECT *

WHERE {?customer a pizza:OWLClass23gkb0tk5kd30tm.

71

 ?customer ?relation ?relatedToCustomer.}

This would be much less intuitive than the user defined names. There are good reasons to use auto-

generated names, especially for large ontologies that are implemented in multiple natural languages.

However, for new users, especially those who plan to use SPARQL and SHACL, I think it is more

intuitive to start with user supplied names and then progress to auto-generated names if and when the

requirements show a true need for them. This approach to developing software incrementally rather than

to attempt to design the perfect system that can scale for all possible future requirements is known as the

Agile approach to software development. In my experience Agile methods have proven themselves in

countless real-world projects to deliver better software on time and on budget than the alternative

waterfall approach. For more on Agile methods see: https://www.agilealliance.org/agile101/

This just gives you a basic overview of some of the things that can be done with SPARQL. There is a lot

more and if you are interested you should check out DuCharme’s book or some of the many SPARQL

tools and tutorials on the web. Some of these are in the bibliography.

One final point: features of OWL and SWRL that new users frequently find frustrating are the Open

World Assumption (OWA) and lack of non-monotonic reasoning. The OWA was discussed in chapter

4.13. Non-monotonic reasoning will be discussed in section 11.1. For now, though remember that

SPARQL is not subject to either of these restrictions. With SPARQL one can do non-monotonic

reasoning and leverage the more common Closed World Assumption (CWA). E.g., one can test if the

value for a property on a specific instance exists or not and can take actions if that property does not exist.

To perform non-monotonic reasoning simply requires a combination of INSERT and DELETE in the

same query. One deletes the existing triple and inserts a triple with the same subject and predicate but a

different object. Unfortunately, this is not possible to currently demonstrate in Protégé because neither of

the implementations in Protégé support INSERT or DELETE. I plan to add some SPARQL utilities to my

blog at some point in the future that provide examples of this. For an example of how SPARQL can be

used to get around the OWA see the ontology and instructions I recently added to my blog at:

https://www.michaeldebellis.com/post/the-people_example-ontology In that example I show how the

defined class Hermit defined as a Person with a maximum of 0 social relations can’t be recognized by

the reasoner due to the OWA. However, a simple SPARQL query can both recognize instances of the

People class with no social relations and can change the type of such instances (?p) by adding the triple:

?p rdf:type :Hermit. This new post also has a much more interesting example SPARQL query

developed with Franz Inc. and their AllegroGraph product. The query utilizes linked data to find the

median income for the area that Barack Obama was born by querying several different public knowledge

graphs such as DBpedia and Geonames.

https://www.agilealliance.org/agile101/
https://www.michaeldebellis.com/post/the-people_example-ontology

72

Chapter 10 SWRL and SQWRL

The Semantic Web Rule Language (SWRL) was created because there are certain kinds of inferences that

can’t be done by Description Logic (DL) axioms. Also, in my experience there are also times where an

inference can be done using DL, but it can be more intuitive to define that inference as a rule.

There are actually two UI’s for SWRL in Protégé. There is the SWRL tab and there is also a Rules view

that can be added to the UI as we added a view in section 8.2. The SWRL tab is the one that is being more

actively developed and I recommend you always use that. This chapter will focus on the SWRL tab.

Everything in this chapter applies to the SWRL tab and will be slightly different in the Rules view. For an

overview of the Rules view see the SWRL Process Modeling tutorial listed at the end of this chapter.

Like all rule systems, SWRL consists of a left-hand side (called the antecedent) and a right-hand side

(called the consequent). The two are separated by an arrow created with a dash and a greater than

character like this: ->. Each expression in a SWRL rule is separated by a ^ sign. The consequent of the

rule fires if and only if every expression in the antecedent is satisfied. Since the antecedent can be

satisfied multiple times, this means that SWRL rules can do iteration. They will fire for every

combination of values that can satisfy the antecedent. All parameters (variables that are wildcards and get

bound dynamically as the rule fires) are preceded by a ?.

SWRL expressions consist of 3 types:

1. Class expressions. This is the name of a class followed by parentheses with a parameter inside.

For example Customer(?c) will bind ?c to an instance of the class Customer and (assuming the

rest of the antecedent is satisfied) will iterate over each instance of the Customer class.

2. Property expressions. This is the name of a property followed by parentheses and two parameters:

the first for the individual that is being tested and the second to bind to the value of that property

for that individual. Note that since individuals can have more than one value for a property this

can also create iteration, where the rules will iterate over every property value for each individual.

E.g., purchasedPizza(?c, ?p) will bind ?p to each Pizza purchased by each customer

?c.

3. Built-in functions. SWRL has a number of built-in functions for doing mathematical tests, string

tests, etc. The SWRL built-ins are documented here: https://www.w3.org/Submission/SWRL/

All SWRL built-ins are prefaced by the swrlb prefix. E.g., the math built-in

swrlb:greaterThan(?np, 1) succeeds if the value of ?np is greater than 1.

We are going to add two simple SWRL rules to our Pizza ontology to compute discounts for some

Customers. We are assuming that our Pizza restaurant hasn’t been in business long, so they want to

give a discount to anyone who has purchased more than one Pizza. Also, their manager overestimated

the love of spicy ingredients of their customers, and they have a lot of Jalapeno peppers that they want to

use before they go bad, so they are offering a larger discount to customers who prefer Hot pizzas rather

than those who prefer Medium or Mild.

To begin with let’s write the first rule to give a 20% discount to all customers who have purchased more

than 2 Pizzas and prefer Hot Pizzas.

https://www.w3.org/Submission/SWRL/

73

Exercise 34: Write Your First SWRL Rule

1. To begin with navigate to or create the SWRLTab. If it doesn’t already exist use

Window>Tabs>SWRLTab to create and select it. If you don’t have the SWRLTab under the

Window>Tabs menu then use File>Check for plugins and select the SWRLTab plugin. Remember if you

do this you need to restart Protégé for the plugin to be available.

2. The SWRLTab is divided into two main views and then some buttons on the bottom of the tab that

relate to DROOLS. The question of when and how to use DROOLS confuses many new users but there is

a simple answer: don’t use it!11 As you get more experience with SWRL you will start to understand how

and when DROOLS is used but for beginners the answer is simple. Think of all those DROOLS buttons

as things for power users only. You don’t need to use them at all. That is why we installed the Pellet

reasoner in section 4.2. The Pellet reasoner supports SWRL and when you run the reasoner it will also

automatically run any SWRL rules you have. See the bibliography for a paper on DROOLS.

3. Click on the New button at the bottom of the top view. The other buttons should be grayed out since

they only apply if you have at least one rule written. This will give you a new pop-up window to write

your rule. In the Name field at the top call the rule: HotDiscountRule. You can skip the comment but if

you want to add a comment it is a good habit to get into and you can write something like: Provide a

special discount for customers who prefer hot pizzas.

4. Now go to the bottom part of the rule window and start writing the rule. To start you want to bind a

parameter to each instance of the Customer class12. To do this all you need to do is to write:

Customer(?c). Note that auto-complete should work in this window but sometimes it may not and you

may need to type the complete name. Also, you will see various hints or error messages in the Status field

as you type which you can mostly ignore for now. E.g., as you type out Customer you will see messages

like: Invalid SWRL atom predicate ‘Cus’ until you complete the name of the Customer class. Those

messages can help you understand why your rule won’t parse as you develop more rules but for now you

should be able to ignore them.

5. Now you want to bind a parameter to the number of Pizzas that each customer has ordered so far. To

do that you first add a ^ character. This stands for the logical and. I.e., the rule will fire for every set of

bindings that satisfy all of the expressions in the antecedent. To test the number of Pizzas you use the

data property numberOfPizzasPurchased. So at this point your rule should look like: Customer(?c) ^

numberOfPizzasPurchased(?c, ?np).

6. Now we want to test the object property hasSpicinessPreference. The first parameter will also be

?c. I.e., we are iterating through each instance of Customer, binding it to ?c and then testing the values

of these properties. However, in this case rather than binding the spiciness preference to a parameter we

just want to test if it is equal to the instance of Spiciness Hot. So we directly reference that instance in

the expression resulting in: ^ hasSpicinessPreference(?c, Hot).

7. As the last part of the antecedent we want to test that the Customer has purchased more than 1 Pizza.

We can use the SWRL math built-in swrlb:greaterThan. Add ^ swrlb:greaterThan(?np, 1) That is the last

11 For more on DROOLS see the paper: M. J. O'Connor (2012). A Pair of OWL 2 RL Reasoners in the bibliography.
12 This isn’t actually required. You will get the same result without the Customer(?c) expression but it is a good
example of how one can use the names of classes to iterate over their instances with SWRL.

74

part of the antecedent so we write -> to signal the beginning of the consequent. At this point your rule

should look like: Customer(?c) ^ numberOfPizzasPurchased(?c, ?np) ^ hasSpicinessPreference(?c, Hot) ^

swrlb:greaterThan(?np, 1) ->

8. Finally, we write the consequent of the rule, the part after the arrow that signifies what to do each time

the rule succeeds. We want to give these customers a 20% discount so we write: hasDiscount(?c, 0.2).

Whereas the expressions on the left hand side are tests to see if the rule should fire, the expression on the

right is an assertion of a new value to be added to the ontology. For those with a logic background the

simple way to think of this is that the antecedent is implicitly universally quantified whereas the

consequent is implicitly existentially quantified.

9. Thus the whole rule should look like: Customer(?c) ^ numberOfPizzasPurchased(?c, ?np) ^

hasSpicinessPreference(?c, Hot) ^ swrlb:greaterThan(?np, 1) -> hasDiscount(?c, 0.2). Take note that the

OK button at the bottom is only possible to select when the rule has a valid syntax. It should be

selectable now so select it. You should see the new rule show up at the top of the top most view.

Note that there is a minor bug in SWRL where sometimes the prefix for the current ontology will be

added to all the expressions without a prefix. So at some point you may see that your expressions end up

looking like this: pizza:Customer(?c). If this happens don’t worry it won’t affect the way the rule works at

all. If at some point this happens and you want to remove the prefixes there is a way to do this described

in my blog: https://www.michaeldebellis.com/post/removing-ontology-prefixes-from-swrl-rules

Next, we want to write a second SWRL rule for other customers who have ordered more than one Pizza

but don’t prefer Hot Pizzas.

Exercise 35: Write Another SWRL Rule

1. Make sure you are still in the SWRLTab. Click on the HotDiscountRule and select Clone

2. This should bring up the same window you used to create your first rule with the code for that rule in

the window. Change the name of this rule from S1 to LessSpicyDiscountRule.

3. Next edit the test for the Customer’s spiciness preference. Rather than just testing if it is Hot we want

to test this time if it isMilderThan Hot. This is an example of using the order relation we defined in

chapter 6. Change hasSpicinessPreference(?c, Hot) to hasSpicinessPreference(?c, ?spr). Rather than just

test if it is equal to Hot we need to bind the preference value to the parameter ?spr. Then after this add

the usual and character and the new test, so you should add: ^ isMilderThan(?spr, Hot)

4. Finally, we want to change the discount for these Customers to be 10% rather than 20%. So change the

consequent to be: hasDiscount(?c, 0.1).

5. Thus the whole rule should look like: Customer(?c) ^ numberOfPizzasPurchased(?c, ?np) ^

hasSpicinessPreference(?c, ?spr) ^ isMilderThan(?spr, Hot) ^ swrlb:greaterThan(?np, 1) ->

hasDiscount(?c, 0.1).

Now we want to run our rules. Remember there is no need to use those DROOLS buttons. Just

synchronize the reasoner and your rules should fire just as other DL axioms that assert values based on

https://www.michaeldebellis.com/post/removing-ontology-prefixes-from-swrl-rules

75

inverses, defined classes, etc. Go back to the Individuals by class tab and look at various Customers. For

example, Customer1 has ordered more than one Pizza and hasSpicinessPreference of Hot so she

has a discount of .2. Note that as with any information asserted by the reasoner, there is a ? next to the

assertion which you can click on and it will provide an explanation about why the value was asserted.

This explanation will list the appropriate rule that fired and the values that caused it to fire. If you look at

Customer6, you will see that he has no discount because he has only purchased one Pizza. Finally, if

you look at Customer2, she has a discount of .1 because she has purchased more than one Pizza but her

spiciness preference isMilderThan Hot.

In this case the consequent of our rule was to add a data property assertion to an individual. Another

possible outcome is to make an individual be an instance of a new class. E.g., if we had a subclass of

Customer called PreferredCustomer and we wanted the result of a rule be to make a Customer an

instance of PreferredCustomer we could have -> PreferredCustomer(?c) as the consequent

of the rule.

A tool that is useful to debug SWRL rules is the Semantic Query-Enhanced Web Rule Language or

SQWRL (pronounced squirrel). SQWRL rules look just like SWRL rules except in the consequent there

is a sqwrl:select statement that lists every parameter that we want to know the value of every time the

rule fires.

Exercise 36: Write a SQWRL Rule

1. Bring up the SQWRLTab if it doesn’t already exist using Windows>Tabs>SQWRLTab. You will see

it looks almost identical to the SWRLTab.

2. Let’s say we want to see how often the HotDiscountRule fires. We can find this out very easily. To

start select the HotDiscountRule and clone it. This creates a copy of the rule called S1. Select that rule

and then select the Edit button.

3. Change the name of the rule to TestHotDiscountRule. Replace the consequent (the expression after

the arrow) with the following: sqwrl:select(?c, ?np) and select OK. Your SQWRL rule should look like:

Customer(?c) ^ numberOfPizzasPurchased(?c, ?np) ^ hasSpicinessPreference(?c, pizza:Hot) ^

swrlb:greaterThan(?np, 1) -> sqwrl:select(?c, ?np). Synchronize the reasoner.

4. Select TestHotDiscountRule then select the Run button at the bottom of the tab. This will create a new

tab in the lower view called TestHotDiscountRule. You should see that the rule fired 3 times with ?c

equal to Customer4, Customer1, and Customer8 and with ?np equal to 3, 2, and 2.

This has been a very brief introduction to SWRL. For a somewhat more interesting example based on

process modeling see: https://www.michaeldebellis.com/post/swrl_tutorial

https://www.michaeldebellis.com/post/swrl_tutorial

76

Chapter 11 SHACL

Next, we will look at a plugin for SHACL. SHACL stands for Shapes Constraint Language. Note that

shape in this context has nothing to do with geometric shapes. SHACL is somewhat newer than the other

technologies described here. However, it fills an essential gap in the Semantic Web architecture stack, and

it is gaining a lot of traction in the world of large-scale corporate development. The reason for SHACL

may at first seem a bit hard to grasp. After all many of the constraints that SHACL can define for data can

also be defined using Description Logic or SWRL which are more high level and a bit easier to use. So

why even bother with SHACL? There are two reasons that SHACL is essential for real world use of

Semantic Web and Knowledge Graph technology:

1. The need to define constraints that aren’t limited by the Open World Assumption (OWA) and

Monotonic reasoning.

2. The fact that real world data is messy!

11.1 OWA and Monotonic Reasoning

As described in section 4.13 OWL uses the Open World Assumption (OWA) because it was designed for

the Internet. However, the OWA makes certain kinds of constraint validation difficult or impossible. For

example, it is common to have a data integrity constraint that all employees must have a social security

number. While such an axiom can be defined in OWL it will seldom work when we want it to because of

the OWA. The OWA means that there may be a social security number out there somewhere in the

Internet but that the system just hasn’t found it yet. While this is true, to validate the integrity of corporate

data just saying “well it is out there somewhere” won’t do. To validate data integrity we need to be able to

fire off warnings when required data isn’t there so we need to use the Closed World Assumption (CWA).

Monotonic reasoning is a byproduct of the fact that OWL and SWRL are based on logic. The OWL

reasoners are essentially theorem provers. If you have ever studied mathematical proofs, you know that

one of the classic ways to prove that something is invalid is to show that some variable has two different

values. E.g., if our theorem implies that p = True and p = False then we have a contradiction. Each

variable can only have one value. This is why SWRL rules can only add values to variables rather than

change them. For more on this see the excellent presentation on SWRL by Martin O’Connor:

https://protege.stanford.edu/conference/2009/slides/SWRL2009ProtegeConference.pdf

This is why SPARQL often needs to be used rather than SWRL even though SWRL is more abstract and

powerful. SWRL does not support non-monotonic reasoning whereas SPARQL does. Similarly, when

validating data, we may want to take actions to change it, e.g., to coerce it into a proper standard format.

To do that we need to change rather than add a value, i.e., we need non-monotonic reasoning.

11.2 The Real World is Messy

The other reason for SHACL is that real world data is messy. Over the span of this tutorial, you may

have experienced a point where you made an error, and the reasoner marked your ontology as invalid. If

you haven’t, congratulations, but as you work with Protégé more you will experience it. This is another

by product of using a logic-based language. Simply having one inconsistency makes the entire model

invalid. For small examples this is not a problem. When one has tens, hundreds, or even thousands of

individuals it isn’t that difficult to find the problem and fix it. However, when dealing with Big Data

where one has tens of thousands, millions, or more individuals the prevalence of bad data may be huge.

https://protege.stanford.edu/conference/2009/slides/SWRL2009ProtegeConference.pdf

77

I.e., it might be the case that we never get the data to satisfy every integrity constraint which would mean

the reasoner is never of any use except to tell us that the ontology is not consistent.

Thus, SHACL provides a way to define data integrity constraints that overlap to some degree with what

can be defined in OWL and SWRL. For example, both can define the number of values allowed for a

specific property. E.g., that each instance of Employee must have one and only one social security

number (ssn). If this were defined as a DL axiom, then the axiom would never fire for employees that

had no ssn because of the OWA. On the other hand, if an Employee accidentally had 2 ssn values then

the entire ontology would be inconsistent until one value was removed. SHACL on the other hand can

handle both these examples and rather than making the entire ontology inconsistent it simply logs

warnings at various levels of severity.

11.3 Basic SHACL Concepts

To understand SHACL recall that the language underlying OWL is RDF which describes graphs as triples

of the form: Subject Predicate Object. SHACL also works at the level of RDF because some developers

may want to simply use that lower level for reasons of efficiency. Thus, RDF can validate an RDF graph

as well as an OWL ontology. Fundamentally, SHACL consists of two components:

1. An RDF vocabulary for defining data constraints on RDF graphs (which includes OWL since an

OWL ontology is an RDF graph).

2. A reasoner for applying the constraints defined in 1 to a specified data graph such as the Pizza

ontology.

One of the most important classes in 1 is a SHACL Shape. An instance of the SHACL Shape class

consists of a set of Targets and Constraints. A Target defines which nodes in the RDF graph that the data

constraints apply to. For OWL ontologies this is typically the name of a class which indicates that the

constraints apply to all instances of that class. The Constraints define the specific property for the

constraint as well as the actual constraints such as the minimum or maximum number of values and the

datatype. In the following example, a Target is the Employee class in the Pizza ontology. An example

constraint is that the ssn property must have exactly one value. Another example constraint is that the

format of the ssn value must be a string of the form: “NNN-NN-NNNN” where each N must be an

integer. For more on SHACL see the references in the bibliography.

11.4 The Protégé SHACL Plug-In

To start go to Windows>Tabs and see if you have SHACL Editor as an option. If you don’t then go to

File>Check for plugins and select the SHACL4Protege Constraint Validator. You need to restart Protégé

to see the new plugin so save your work and then quit and start Protégé and load the Pizza ontology with

data.

Because editing SHACL is a bit more complex for this version of the tutorial we are only going to view

some already written SHACL constraints and see how the validator processes them rather than writing

additional constraints. First download the PizzaShapes.txt file to your local hard drive. This file can be

found at: https://tinyurl.com/pizzatshapes Once you have downloaded the file open the SHACL Editor:

Window>Tabs>SHACL Editor.

You will see an example shapes file in the editor when it opens but that isn’t the shapes file you are

looking for. From the editor click on the Open button at the top of the tab and navigate to the

PizzaShapes.txt file you downloaded.

https://tinyurl.com/pizzatshapes

78

There are two shapes in this file, one for the Employee class and one for the Customer class. So, we

want to expand only the Person class in the Class hierarchy view. We will start with the Employee class

so select that class which should result in all the instances of Employee being displayed in the view

below it.

For the SHACL Editor we want the bottom view in the middle to take up as much screen real estate as

possible. So, to start we can delete the two views on the far right side of the tab by clicking on the X at the

top of each tab.

Then drag the SHACL Editor view over to the left just enough so you can see the Employee and

Customer classes and their instances. Your UI should look similar to figure 11.1.

To begin examine the code in the SHACL Editor view. Note that at the beginning there are a list of

namespaces, similar to the namespace prefixes in the SPARQL editor. After the prefixes there is the first

actual shape which is the EmployeeShape. This shape constrains values of properties on instances of

Employee. The sh:targetClass identifies the class that this shape is for. Beneath that are various nodes (as

in nodes in a graph, SHACL is also represented as triples) that constrain various properties that apply to

the Employee class. The first node constrains the cardinality of the ssn property to be exactly one

(minCount 1 and maxCount1). The next also applies to ssn and constrains the data further than just

saying it must be a string. It must be a string that matches the pattern: "^\\d{3}-\\d{2}-\\d{4}$" This is a

regex expression that means the pattern must be 3 digits (numeric characters from 0-9), followed by a

dash, followed by 2 digits, followed by a dash, followed by 4 digits.

The next 2 nodes deal with the hasPhone data property. This property must have at least one value

(although possibly more) and must also conform to a similar pattern of 3 digits followed by a dash

followed by 3 digits followed by a dash followed by 4 digits. Of course, actual phone numbers can be

more complex and varied but this is just a simple example.

79

Figure 11.1 The SHACL Editor

Now hit the Validate button. You should see several messages displayed in the long SHACL constraint

violations view at the bottom. If you had the Employee class selected when you clicked on Validate, then

this view should now read: SHACL constraint violations: 5/8. This means that there were 8 constraint

violations and 5 of them were on instances of the Employee class. You can see the violations that apply

to each Employee by clicking on each individual. You can resize the various columns in this view which

is helpful to view the information you need. The most useful data is in the Message, Path, and Value

columns. All the other columns such as Severity and Source can be made as small as possible to make

more room for those other columns. If you do this and click on the Chef individual you will see that she

has one constraint violation. See figure 11.2.

You can see that the Chef individual has 2 values for the ssn property which is more than allowed. If

you examine the Chef individual in the Individuals by class view you will see that this is indeed the case.

80

Figure 11.2 Constraint Violation for the Chef Individual

If you click on the Manager individual, you will see that he has a constraint violation because his phone

number is not in the proper format. Waiter1 has a similar problem. Waiter2 has missing data. Her

hasPhone and ssn data properties both must have values but don’t.

If you move your focus to the Customer class, you can see the remaining 3 constraint violations.

Customer10’s hasDiscount property is greater than 1 which is not allowed. This is defined by the

CustomerShape in the hasDiscount node with sh:minInclusive 0.0 and sh:maxInclusive

1.0. This is the way you define a minimum and maximum value for a numeric property (note: this

applies to the value not to the number of values). Customer2 also has a hasPhone value that doesn’t match

the defined format and finally Customer3 does not have a value for hasPhone when at least one is

required.

Recall that the SHACL constraints themselves are essentially RDF graphs. Figures 11.3 and 11.4

illustrate the Employee shape and the Customer shape used in the above example as graphed in the

Gruff tool from AllegroGraph.

81

Figure 11.3 Gruff Visualization of the EmployeeShape

Figure 11.4 Gruff Visualization of the CustomerShape

82

This is just the most basic introduction to SHACL. For a more sophisticated tutorial see the Top Quadrant

tutorial: https://www.topquadrant.com/technology/shacl/tutorial/ Also, this presentation:

https://www.slideshare.net/jelabra/shacl-by-example gives much more detail on SHACL.

https://www.topquadrant.com/technology/shacl/tutorial/
https://www.slideshare.net/jelabra/shacl-by-example

83

Chapter 12 Web Protégé

This tutorial has primarily focused on the desktop version of Protégé because as of this writing Web

Protégé doesn’t support any reasoners so the majority of the sophisticated capabilities of OWL and

Protégé such as defined classes and SWRL rules can’t be created in Web Protégé. However, one of my

goals in creating this tutorial was to address questions that I’ve seen frequently asked on the Protégé user

support email list and one of the most common question is the difference between Protégé and Web

Protégé. We are all used to using tools as services rather than applications installed on our local

machines, so people often go to Web Protégé as their default. While Web Protégé lacks reasoner support

it can still be extremely useful for collaborative development. This chapter explains the benefits of Web

Protégé and some best practices for using the two tools together.

To begin it is recommended that new users start with the desktop version of Protégé13. The constraints

imposed on the ontology by lack of a reasoner are significant and if one learns only using Web Protégé

they will miss many of the benefits of OWL and come away with the idea that Protégé is little more than

a traditional object modeling tool. However, once one is familiar with the desktop version it is worth

getting familiar with Web Protégé as it can be extremely useful for joint development of an ontology by 2

or more people.

To begin there are two options for Web Protégé:

1. Use the Stanford server at webprotege.stanford.edu

2. Download and install the Web Protégé software on your own local server.

Figure 12.1 Web Protégé Projects

Unless you have security requirements at your organization that prohibit you from using the hosted

version at Stanford it is best to start with the Stanford server. I won’t go into the details of how to install a

local Web Protégé server because either way the functionality is the same. To start, let’s create a project

in Web Protégé for the Pizza tutorial with data ontology. When you first go to webprotege.stanford.edu

13 From this point on I will refer to the Desktop version of Protégé as just Protégé.

file:///C:/Users/mdebe/Desktop/New%20Protege%20Tutorial/webprotege.stanford.edu
file:///C:/Users/mdebe/Desktop/New%20Protege%20Tutorial/webprotege.stanford.edu

84

you will be prompted to create a user ID (your email address) and a password. Once you do that you

should have a fresh Web Protégé workspace. Figure 12.1 shows what my Web Protégé workspace

currently looks like. Most of the projects are owned by me although note that the CODO project is owned

by my colleague Biswanath Dutta. However, I still have complete access to that ontology due to the way

Biswanath has configured my access as being able to both view and edit the ontology.

To upload the Pizza ontology, select the large Create New Project button. This will bring up the window

shown in figure 12.2. Fill out the project name and description, then select the Choose File button and

navigate to where you have the latest version of the Pizza tutorial with data. Note that in the figure I have

already done this navigation so there is a value for the file to load. You can leave the Language field

blank. Once you have all the fields set up similar to figure 12.2 click the Create New Project button on

this dialog (note this is a different button than the one you started from).

Figure 12.2 The Create New Project Dialog

Your workspace should now include your first project. Click on the three horizontal bars at the far right of

the project. This should bring up a pop-up menu. Select the Open option. This should bring you into the

main Web Protégé UI to browse an ontology.

Before you make changes to the ontology you need to make sure the settings for new entities and

rendering are consistent with the settings you used for the Pizza ontology. The default in Web Protégé as

with Protégé is to use Auto-Generated UUIDs rather than user supplied names. If you aren’t sure about

these settings you can go back to exercise 2 at the beginning of chapter 4 and chapter 7 to refresh your

memory. There are excellent reasons to use auto-generated UUIDs but for beginners, especially for those

who want to learn SPARQL, I think they make learning the basics more difficult so we have been using

the alternative of user supplied names. At the top of the Web Protégé UI in the right corner there are

85

various links: Display, Project, Share,… Click on Project. This will give you a dropdown menu. Select

Settings from that menu. Scroll down to New Entity Settings. Change IRI Suffix from Auto-generated

Universally Unique ID (UUID) to Supplied name. Leave the rest of the settings as they are and select the

Apply button at the bottom right corner of the screen.

When you select Apply, you should return to the main Web Protégé view with the Class hierarchy tab

selected. If it doesn’t select that tab. Select the Pizza class. Your UI should look like figure 12.3.

Figure 12.3 Browsing the Pizza Ontology in Web Protégé

Note that the axioms for the Pizza class are there but they are not editable. Protégé uses the reasoner even

when entering or editing axioms to ensure that any axioms have the proper syntax so since there is no

reasoner in Web Protégé it is not possible to edit axioms (since one might introduce syntactically

incorrect axioms) only delete them using the X at the right of each axiom.

Also note the panels on the right: Comments and Project Feed. These are new capabilities in Web Protégé

to facilitate collaborative design of ontologies. We will demonstrate that shortly. First, you can navigate

the class hierarchy by clicking on the triangles at the left of each class that has at least one subclass. This

will expand the class and show its subclasses. Click on Pizza to see its subclasses. For our scenario

imagine we are opening a new branch of our pizza store in Chicago and we are dealing with a domain

expert in Chicago pizza. As they examine the hierarchy, they are appalled to see that there is no class for

ChicagoPizza, a type of deep dish Pizza that first became popular in Chicago. Click on NamedPizza.

Then click on the icon at the left corner of the Comments view. If you hover the mouse over this icon you

86

should see the prompt Start new thread indicating the functionality of this icon. Make sure NamedPizza is

still selected and then click on the icon to start a new thread. This will bring up a window titled Edit

where you can begin a new thread. Type something like: We need a subclass of NamedPizza called

ChicagoPizza. It should have an axiom that requires it to have a DeepPanBase. Then hit the OK button.

Your UI should look similar to figure 12.4.

Figure 12.4 Creating a Discussion Thread

Note the new comment in the Comments view and the update in the Project Feed view. The Comments

view captures comments made on any entity in the ontology. The Project Feed view captures each change

made to the ontology.

To see what threaded discussions look like click on the new comment and select Reply. Add a comment

like: I agree, ChicagoPizza is awesome and deserves its own class.

Let’s address this comment by creating a new subclass of NamedPizza. Select NamedPizza in the Class

Hierarchy view. Note the icon in the upper right corner of this view that looks similar to this: O+. When

you hover over this icon it should say Create. You can use this icon to create new classes and subclasses.

Make sure NamedPizza is still selected and click on this icon to create a new subclass of NamedPizza.

This will bring up a dialog titled Create Classes. In the Class names field enter the name ChicagoPizza.

You can leave the Language Tag field empty. Click on the Create button. You should now see

ChicagoPizza as a new subclass of NamedPizza. Note that at the top of the Project Feed there should

be a new entry for your action of creating this new class.

87

You might be tempted to resolve this thread (note the Resolve link at the top of the initial comment)

however, we aren’t really done. Remember that we need to not just create the class but also define the

axiom that a ChicagoPizza must have a DeepPanBase. Since we can’t add axioms in Web Protégé we

need to export our ontology back to Protégé. Typically, we would collect many more comments and

changes before exporting but we want to demonstrate how round-trip editing works between Protégé and

Web Protégé. We could of course just export the ontology from Web Protégé to Protégé and then create

another new Project, but it would be cumbersome to have to constantly create new projects every time

you want to make a change in Protégé and if we did this, we would lose our audit trail of comments and

changes. Luckily, there is a better way to do it.

To start we need to export the ontology to a file. Note that one of the tabs at the top is History. Select that

tab. This tab shows a list of each version of the ontology. There should be 2 versions labelled R1 and R2

(in the right corner of each version). The most recent version is always at the top since that is typically

what you want although it is also possible to roll back changes to previous versions. We want to export

the latest version R2. Click on the R2 icon. This should give you a drop-down menu with two options:

Revert changes in revision 2 and Download revision 2. Select Download revision 2. This will prompt you

with the standard file browser for your OS to save a zip file with the new ontology. The ontology is saved

with a zip file because ontologies can be large and since Web Protégé is working over a network we may

want to limit the network traffic for large ontologies. Select the appropriate place to save the Zip archive

file on the machine where you have Protégé. Do the standard things you would do to unzip the file and

load it into Protégé. Note that when you unzip the file it will create a directory as well, so the file won’t

be directly under whatever directory you save it to. Instead, there will be a directory titled something like

pizza-with-data-ontologies-owl-REVISION-2 that the OWL file will be in.

Load the downloaded file into Protégé. Go to the Class hierarchy tab and navigate to the new

ChicagoPizza class under NamedPizza. Add the axiom (refer back to chapter 4 if you need to remember

how to add axioms to classes) hasBase some DeepPanBase. Save the file. Now go back to Web Protégé

and your version of the Pizza ontology there. Note that in the upper right corner of the window there are

links (drop down menus) such as Display and Project. Select Project and from the drop down menu select

Apply External Edits. This will give you a small dialog titled Upload ontologies with a little button to

Choose File. Click on Choose File. That will give you the standard OS dialog for selecting a file.

Navigate to the file you saved from Protégé and select that then choose OK. That should result in a new

pop-up window titled Merge ontologies where you will see the changes (in this case only the addition of

the ChicagoPizza axiom) and a text box where you can describe the changes. Add an appropriate

Commit message or just take the default and select OK. You should get a message that says the changes

were successfully applied.

If you navigate back to ChicagoPizza you should see that it now has that axiom. You can also navigate

back to NamedPizza. In the right most column, you should see the comments about needing to add

ChicagoPizza as a subclass. Now that this has been done you can click on the Resolve link in the upper

right corner of the comment thread and the comments will be removed from NamedPizza.

88

Chapter 13 Conclusion: Some Personal Thoughts and Opinions

This tutorial is just the entry point to a technology that is entering the Slope of Enlightenment in the

Gartner technology hype cycle [Gartner Hype Cycle]. Tim Berners-Lee published his paper on the

Semantic Web [Berners-Lee 2001] way back in 2001. At least in my experience for most large US

corporations the excitement around Machine Learning seemed for a while to eclipse serious interest in

OWL, SPARQL, and other Semantic Web technologies in the United States. Then Google [Singhal 2012]

coined the term “knowledge graph”. After that, Facebook [Olanof 2013], Amazon [Neptune 2017], and

many other technology leaders started to embrace the technology [Noy 2019]. The corporate world is

finally realizing that machine learning and knowledge graphs are complementary not competitive

technologies. In an article I recently wrote with Biswanath Dutta (publication pending) on how

knowledge graphs contributed to combatting the Covid-19 pandemic the vast majority of the systems

developed with knowledge graphs utilized machine learning for tasks such as converting from “strings to

things”.

The term knowledge graph itself can be used in different ways. The best definition I’ve heard is that an

ontology provides the vocabulary (i.e., essentially the T-Box) and a knowledge graph is an ontology

combined with data (A-Box). Although in the corporate world I often hear people simply talk about

knowledge graphs without much interest in the distinction between the vocabulary and the data.

There are a number of vendors emerging who are using the technology in very productive ways and are

providing the foundation for federated knowledge graphs that can scale to hundreds of millions of triples

or more and provide a framework for all corporate data. I’ve listed several in the bibliography but those

are only the ones I’ve had some experience with. I’m sure there are many others. One of the products I’ve

had the best experience with is the AllegroGraph triplestore and the Gruff visualization tool from Franz

Inc. Although Allegro is a commercial tool, the free version supports most of the core capabilities of the

commercial version. I’ve found the Allegro triplestore easy to use on a Windows PC with the Docker tool

to emulate a Linux server.

I first started working with classification-based languages when I worked at the Information Sciences

Institute (ISI) and used the Loom language [Macgregor 91] to develop B2B systems for the US

Department of Defense and their contractors. Since then, I’ve followed the progress of the technology,

especially the DARPA knowledge sharing initiative [Neches 91] and always thought there was great

promise in the technology. When I first discovered Protégé it was a great experience. It is one of the best

supported and most usable free tools I’ve ever seen, and it always surprised me that there weren’t more

corporate users leveraging it in major ways. I think we are finally starting to see this happen and I hope

this tutorial helps in a small way to accelerate the adoption of this powerful and robust tool.

89

Chapter 14 Bibliography

Rather than a standard bibliography, this section is divided into various categories based on resources that

will be valuable for future exploration of the technologies and methods described in this tutorial.

14.1 W3C Documents

OWL 2 Primer: https://www.w3.org/TR/owl2-primer/

OWL 2 Specification: https://www.w3.org/TR/owl2-overview/

Semantic Web Primer for Object-Oriented Software Developers: https://www.w3.org/TR/sw-oosd-

primer/

SPARQL Specification: https://www.w3.org/TR/sparql11-query/

SWRL Specification and Built-ins: https://www.w3.org/Submission/SWRL/

14.2 Web Sites, Tools, And Presentations.

Agile Alliance: https://www.agilealliance.org/agile101/

Cellfie: https://github.com/protegeproject/cellfie-plugin/wiki/Grocery-Tutorial

Gartner Hype Cycle: https://www.gartner.com/en/research/methodologies/gartner-hype-cycle

Jena: Open Source Java Framework for Semantic Web and Linked Data Applications:

https://jena.apache.org/

Open World Assumption (OWA) presentation by Nick Drummond and Rob Shearer:

http://www.cs.man.ac.uk/~drummond/presentations/OWA.pdf

Protégé: https://protege.stanford.edu/

Protégé Best Practices. Summary page on my blog for all my articles on Protégé, OWL, SWRL, etc.:

https://www.michaeldebellis.com/post/best-practices-for-new-protege-users

SHACL Playground: https://shacl.org/playground/

SWRL Presentation by Martin O’Connor:

https://protege.stanford.edu/conference/2009/slides/SWRL2009ProtegeConference.pdf

WebProtégé: https://webprotege.stanford.edu/

WebVOWL: Web-based Visualization of Ontologies: http://vowl.visualdataweb.org/webvowl.html

14.3 Papers

Berners-Lee (2001). The Semantic Web: A new form of Web content that is meaningful to computers will

unleash a revolution of new possibilities. With James Hendler and Ora Lassila. Scientific American, May

17, 2001. https://tinyurl.com/BernersLeeSemanticWeb

MacGregor, Robert (1991). "Using a description classifier to enhance knowledge representation". IEEE

Expert. 6 (3): 41–46. doi:10.1109/64.87683 https://tinyurl.com/MacGregorLoom

https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/sw-oosd-primer/
https://www.w3.org/TR/sw-oosd-primer/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/Submission/SWRL/
https://www.agilealliance.org/agile101/
https://github.com/protegeproject/cellfie-plugin/wiki/Grocery-Tutorial
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://jena.apache.org/
http://www.cs.man.ac.uk/~drummond/presentations/OWA.pdf
https://protege.stanford.edu/
https://www.michaeldebellis.com/post/best-practices-for-new-protege-users
https://shacl.org/playground/
https://protege.stanford.edu/conference/2009/slides/SWRL2009ProtegeConference.pdf
https://webprotege.stanford.edu/
http://vowl.visualdataweb.org/webvowl.html
https://tinyurl.com/BernersLeeSemanticWeb
https://tinyurl.com/MacGregorLoom

90

Neches, Robert (1991). Enabling Technology for Knowledge Sharing. With Richard Fikes, Tim Finin,

Thomas Gruber, Ramesh Patil, Ted Senator, and William T. Swartout. AI Magazine. Volume 12 Number

3 (1991). https://tinyurl.com/DARPAKnowledgeSharing

Noy, Natasha (2019). Industry-Scale Knowledge Graphs: Lessons and Challenges. With Yuqing Gao,

Anshu Jain, Anant Narayanan, Alan Patterson, Jamie Taylor. Communications of the ACM. Vol. 62. No.

8. August 2019. https://tinyurl.com/ACMKnowledgeGraphs

M. J. O'Connor (2012). A Pair of OWL 2 RL Reasoners. With A.K. Das. OWL: Experiences and

Directions (OWLED), 9th International Workshop, Heraklion, Greece, 2012. http://ceur-ws.org/Vol-

849/paper_31.pdf

Singhal, Amit. (2012). Introducing the Knowledge Graph: things, not strings. Google SVP, Engineering.
May 16, 2012. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

14.4 Books

DuCharme, Bob (2011). Learning SPARQL. O’Reilly Media

Lewis, Harry. (1997). Elements of the Theory of Computation. With Christos Papadimitriou. Prentice-

Hall; 2nd edition (August 7, 1997). ISBN-13: 978-0132624787

Segaran, Toby (2009). Programming the Semantic Web: Build Flexible Applications with Graph Data.

With Colin Evans and Jamie Taylor. O'Reilly Media; 1st edition (July 28, 2009).

14.5 Vendors

AllegroGraph Triplestore (Franz Inc.): https://franz.com/

Amazon Neptune: https://aws.amazon.com/neptune/

Docker: https://www.docker.com/

Dynaccurate: https://www.dynaccurate.com/

Ontotext: https://www.ontotext.com/

Pool Party: https://www.poolparty.biz/

Stardog: https://www.stardog.com/

Top Quadrant: https://www.topquadrant.com/

https://tinyurl.com/DARPAKnowledgeSharing
https://tinyurl.com/ACMKnowledgeGraphs
http://ceur-ws.org/Vol-849/paper_31.pdf
http://ceur-ws.org/Vol-849/paper_31.pdf
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://franz.com/
https://aws.amazon.com/neptune/
https://www.docker.com/
https://www.dynaccurate.com/
https://www.ontotext.com/
https://www.poolparty.biz/
https://www.stardog.com/
https://www.topquadrant.com/

